Ideals and primitive elements of some relatively free Lie algebras
Let F be a free Lie algebra of finite rank over a field K . We prove that if an ideal v ~ of the algebra F / γ m + 1 F ′ contains a primitive element u ~ then the element v ~ is primitive. We also show that, in the Lie algebra F / γ 3 F ′ there exists an element v ¯ such that the ideal v ¯ contains...
Gespeichert in:
Veröffentlicht in: | SpringerPlus 2016-06, Vol.5 (1), p.833-833, Article 833 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
F
be a free Lie algebra of finite rank over a field
K
. We prove that if an ideal
v
~
of the algebra
F
/
γ
m
+
1
F
′
contains a primitive element
u
~
then the element
v
~
is primitive. We also show that, in the Lie algebra
F
/
γ
3
F
′
there exists an element
v
¯
such that the ideal
v
¯
contains a primitive element
u
¯
but,
u
¯
and
v
¯
are not conjugate by means of an inner automorphism. |
---|---|
ISSN: | 2193-1801 2193-1801 |
DOI: | 10.1186/s40064-016-2545-2 |