Ideals and primitive elements of some relatively free Lie algebras

Let F be a free Lie algebra of finite rank over a field K . We prove that if an ideal v ~ of the algebra F / γ m + 1 F ′ contains a primitive element u ~ then the element v ~ is primitive. We also show that, in the Lie algebra F / γ 3 F ′ there exists an element v ¯ such that the ideal v ¯ contains...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SpringerPlus 2016-06, Vol.5 (1), p.833-833, Article 833
Hauptverfasser: Ekici, Naime, Esmerligil, Zerrin, Ersalan, Dilek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let F be a free Lie algebra of finite rank over a field K . We prove that if an ideal v ~ of the algebra F / γ m + 1 F ′ contains a primitive element u ~ then the element v ~ is primitive. We also show that, in the Lie algebra F / γ 3 F ′ there exists an element v ¯ such that the ideal v ¯ contains a primitive element u ¯ but, u ¯ and v ¯ are not conjugate by means of an inner automorphism.
ISSN:2193-1801
2193-1801
DOI:10.1186/s40064-016-2545-2