The solute carrier SLC35F2 enables YM155-mediated DNA damage toxicity
A haploid screen in human cells identified the solute carrier protein family member, SLC35F2, as a determinant of the sensitivity of cells to the DNA damaging agent, YM155, by promoting YM155 import into cells. Genotoxic chemotherapy is the most common cancer treatment strategy. However, its untarge...
Gespeichert in:
Veröffentlicht in: | Nature chemical biology 2014-09, Vol.10 (9), p.768-773 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A haploid screen in human cells identified the solute carrier protein family member, SLC35F2, as a determinant of the sensitivity of cells to the DNA damaging agent, YM155, by promoting YM155 import into cells.
Genotoxic chemotherapy is the most common cancer treatment strategy. However, its untargeted generic DNA-damaging nature and associated systemic cytotoxicity greatly limit its therapeutic applications. Here, we used a haploid genetic screen in human cells to discover an absolute dependency of the clinically evaluated anticancer compound YM155 on solute carrier family member 35 F2 (SLC35F2), an uncharacterized member of the solute carrier protein family that is highly expressed in a variety of human cancers. YM155 generated DNA damage through intercalation, which was contingent on the expression of SLC35F2 and its drug-importing activity. SLC35F2 expression and YM155 sensitivity correlated across a panel of cancer cell lines, and targeted genome editing verified SLC35F2 as the main determinant of YM155-mediated DNA damage toxicity
in vitro
and
in vivo
. These findings suggest a new route to targeted DNA damage by exploiting tumor and patient-specific import of YM155. |
---|---|
ISSN: | 1552-4450 1552-4469 |
DOI: | 10.1038/nchembio.1590 |