Malunion of the distal radius in children: Accurate prediction of the expected remodeling

Purpose Malunions of fractures in children have a natural tendency to remodel. However, quantitative data of this well-known process are scarce. The extent of the correction depends inter alia on the type of bone and the location of the deformity and growth remaining. The aim of this study was to qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of children's orthopaedics 2016-06, Vol.10 (3), p.235-240
Hauptverfasser: van der Sluijs, J. A., Bron, J. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Malunions of fractures in children have a natural tendency to remodel. However, quantitative data of this well-known process are scarce. The extent of the correction depends inter alia on the type of bone and the location of the deformity and growth remaining. The aim of this study was to quantify the remodeling process of distal radius malunions in children to allow better future prediction. Methods Data were derived from two published patient series. Analysis included 63 malunions of distal radius fractures in 62 children (38 boys), with a mean age of 8.5 years (range 2–14.5 years). Results The mean initial dorsovolar angulation was 25° [standard deviation (SD) 7.8°], remodeling time 22 (SD 18) months, and angulation at follow-up 6.7° (SD 5.8°). Based on these findings, the remodeling process can be described as an exponential function with angulation (A0) as a factor and the remodeling time (RT) as a negative exponent of e (R2 = 0.47). The function allows accurate prediction of the expected correction in over 76 % of the malunions. From this model, a formula was derived for calculation of the time needed for complete remodeling, but this formula lacked precision when compared to findings in the literature and needs to be validated. Conclusions The remodeling of distal radius malunions can be described as an exponential function with starting speed dependent on the initial angulation. The current model proves to be more accurate than models described previously in the literature. These findings allow for better patient information and optimal planning of eventual surgical intervention. The postulated model could serve as a basis for the description of correction of other malunions by adaptation of the coefficients in this model.
ISSN:1863-2521
1863-2548
DOI:10.1007/s11832-016-0741-9