Changing the thickness of two layers: i-ZnO nanorods, p-Cu2O and its influence on the carriers transport mechanism of the p-Cu2O/i-ZnO nanorods/n-IGZO heterojunction

In this study, two layers: i-ZnO nanorods and p-Cu 2 O were fabricated by electrochemical deposition. The fabricating process was the initial formation of ZnO nanorods layer on the n-IGZO thin film which was prepared by sputtering method, then a p-Cu 2 O layer was deposited on top of rods to form th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SpringerPlus 2016-06, Vol.5 (1), p.710-710, Article 710
Hauptverfasser: Ke, Nguyen Huu, Trinh, Le Thi Tuyet, Phung, Pham Kim, Loan, Phan Thi Kieu, Tuan, Dao Anh, Truong, Nguyen Huu, Tran, Cao Vinh, Hung, Le Vu Tuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, two layers: i-ZnO nanorods and p-Cu 2 O were fabricated by electrochemical deposition. The fabricating process was the initial formation of ZnO nanorods layer on the n-IGZO thin film which was prepared by sputtering method, then a p-Cu 2 O layer was deposited on top of rods to form the p-Cu 2 O/i-ZnO nanorods/n-ZnO heterojunction. The XRD, SEM, UV–VIS, I–V characteristics methods were used to define structure, optical and electrical properties of these heterojunction layers. The fabricating conditions and thickness of the Cu 2 O layers significantly affected to the formation, microstructure, electrical and optical properties of the junction. The length of i-ZnO nanorods layer in the structure of the heterojunction has strongly affected to the carriers transport mechanism and performance of this heterojunction.
ISSN:2193-1801
2193-1801
DOI:10.1186/s40064-016-2468-y