Cadmium Level, Glycemic Control, and Indices of Renal Function in Treated Type II Diabetics: Implications for Polluted Environments

Cadmium (Cd) has recently emerged as a major concern not only in environmental toxicology but also in metabolic diseases such as diabetes mellitus and its complications. Conflicting data aside, these studies have not been examined in a clinical population undergoing management as well as possible mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in public health 2016-06, Vol.4, p.114-114
Hauptverfasser: Anetor, John I, Uche, Chukwuemelie Z, Ayita, Emmanuel B, Adedapo, Solomon K, Adeleye, Jokotade O, Anetor, Gloria O, Akinlade, Sola K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cadmium (Cd) has recently emerged as a major concern not only in environmental toxicology but also in metabolic diseases such as diabetes mellitus and its complications. Conflicting data aside, these studies have not been examined in a clinical population undergoing management as well as possible modulation by the prominent metabolic antagonist of Cd such as zinc (Zn). This study examined the relationship between cadmium levels, glycemic control, and renal pathology in established type II diabetic patients with focus on populations exposed to modern environmental health hazards (MEHHs). Sixty-five participants, consisting of 45 type-2 diabetics and 20 non-diabetics were enrolled for the study, mean age 61.51 ± 5.27 years. Glycated hemoglobin (HbA1c) was used to classify them into three sub-groups: (A) good glycemic control (44.4%), (B) fair glycemic control (24.4%), and (C) poor glycemic control (31.1%). Plasma levels of glucose, Cd, Zn, HbA1c, creatinine, urinary creatinine, microalbuminuria, and estimated glomerular filtration rate (eGFR) were determined in all participants using standard methods. Fasting plasma glucose was higher in diabetics than in non-diabetics (p = 0.000) as well as Zn level, though not significantly. Interestingly, Cd level, Cd/Zn ratio, and urinary creatinine were significantly lower in diabetics than in non-diabetics. The group with poor glycemic control (C) had significantly higher Cd level compared to the one with good glycemic control (group A). The renal function revealed that microalbuminuria and urinary albumin/creatinine ratio (UACR) was significantly higher in diabetics than in non-diabetics, while eGFR was found to be similar in both diabetics and non-diabetics. UACR inversely correlated with Cd level, while plasma creatinine level positively correlated with Cd but not significantly. Correlation between Cd and HbA1c revealed non-significant inverse correlation (r = -0.007; p > 0.05), while Zn showed a significant inverse correlation with Cd (r = -0.317; p 
ISSN:2296-2565
2296-2565
DOI:10.3389/fpubh.2016.00114