Tumor-Associated Macrophage-Mediated Targeted Therapy of Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is the most aggressive form of breast cancer. TNBC is often infiltrated with a large number of macrophages, which in turn promote tumor growth and metastasis. In this study, tumor-associated macrophages (TAMs) were exploited as a target to deliver doxorubicin (DO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular pharmaceutics 2016-06, Vol.13 (6), p.1833-1842
Hauptverfasser: Niu, Mengmeng, Valdes, Solange, Naguib, Youssef W, Hursting, Stephen D, Cui, Zhengrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Triple-negative breast cancer (TNBC) is the most aggressive form of breast cancer. TNBC is often infiltrated with a large number of macrophages, which in turn promote tumor growth and metastasis. In this study, tumor-associated macrophages (TAMs) were exploited as a target to deliver doxorubicin (DOX), a chemotherapeutic agent, to TNBC using nanoparticles surface-functionalized by (i) acid-sensitive sheddable PEGylation and (ii) modifying with mannose (i.e., DOX-AS-M-PLGA-NPs). In mice with orthotopic M-Wnt triple-negative mammary tumors, a single intravenous injection of DOX-AS-M-PLGA-NPs significantly reduced macrophage population in tumors within 2 days, and the density of the macrophages recovered slowly. Repeated injections of DOX-AS-M-PLGA-NPs can help maintain the population of the macrophages at a lower level. In M-Wnt tumor-bearing mice that were pretreated with zoledronic acid to nonselectively deplete macrophages, the TAM-targeting DOX-AS-M-PLGA-NPs were not more effective than the DOX-AS-PLGA-NPs that were not surface-modified with mannose and thus do not target TAMs in controlling tumor growth. However, in M-Wnt tumor-bearing mice that were not pretreated with zoledronic acid, the TAM-targeting DOX-AS-M-PLGA-NPs were significantly more effective than the nontargeting DOX-AS-PLGA-NPs in controlling the tumor growth. The AS-M-PLGA-NPs or other nanoparticles surface-functionalized similarly, when loaded with a chemotherapeutic agent commonly used in adjuvant therapy of TNBC, may be developed into targeted therapy for TNBC.
ISSN:1543-8384
1543-8392
DOI:10.1021/acs.molpharmaceut.5b00987