Ovarian proteomic study reveals the possible molecular mechanism for hyperprolificacy of Small Tail Han sheep
Small Tail Han sheep is a widely bred farm animal in China which has attracted lots of attention due to their high prolificacy and year-round estrus. However, the molecular mechanism of its fecundity remains unrevealed. The FecB gene polymorphism has been found to be associated with the ovulation ra...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-06, Vol.6 (1), p.27606-27606, Article 27606 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Small Tail Han sheep is a widely bred farm animal in China which has attracted lots of attention due to their high prolificacy and year-round estrus. However, the molecular mechanism of its fecundity remains unrevealed. The FecB gene polymorphism has been found to be associated with the ovulation rate and litter size of sheep. In the present study, we constructed an iTRAQ-based quantitative proteomics analysis to compare the ovarian proteomes of FecB+FecB+ genotype Small Tail Han sheep ewes (Han ++), FecB
B
FecB
B
Han ewes (Han BB) and Dorset ewes (Dorset). Hundreds of differentially expressed proteins between each two groups were identified; GO and KEGG pathway analysis indicated that the expressions of those proteins involved in ribosome assembly, protein translation and mTOR pathway between Dorset and both Han groups were highly different. Between Han ++ and Han BB groups, higher level of protein expressions were related to mitochondrial oxidation functions such as oxidoreductase activity, cytochrome-c oxidase activity and electron carrier activity. This was identified in Han BB group, which may contribute to the elevated ovulation rate of Han BB ewes. In conclusion, our work provided a prospective understanding of the molecular mechanism for high prolificacy of Small Tail Han sheep. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep27606 |