Limiting influenza virus, HIV and dengue virus infection by targeting viral proteostasis
Viruses are obligate parasites as they require the machinery of the host cell to replicate. Inhibition of host factors co-opted during active infection is a strategy to suppress viral replication and a potential pan antiviral therapy. To define the cellular proteins and processes required for a viru...
Gespeichert in:
Veröffentlicht in: | Immunity (Cambridge, Mass.) Mass.), 2016-01, Vol.44 (1), p.46-58 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Viruses are obligate parasites as they require the machinery of the host cell to replicate. Inhibition of host factors co-opted during active infection is a strategy to suppress viral replication and a potential pan antiviral therapy. To define the cellular proteins and processes required for a virus during infection is thus crucial to understanding the mechanisms of virally induced disease. In this report, we generated fully infectious tagged influenza viruses and used infection-based proteomics to identify pivotal arms of cellular signaling required for influenza virus growth and infectivity. Using mathematical modeling, genetic, and pharmacologic approaches, we revealed that modulation of Sec61-mediated cotranslational translocation selectively impaired glycoprotein proteostasis of influenza as well as HIV and dengue viruses, and led to inhibition of viral growth and infectivity. Thus, by studying virus-human protein-protein interactions in the context of active replication we have identified targetable host factors for broad-spectrum antiviral therapies. |
---|---|
ISSN: | 1074-7613 1097-4180 |
DOI: | 10.1016/j.immuni.2015.12.017 |