Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression
Failure of T cells to protect against cancer is thought to result from lack of antigen recognition, chronic activation, and/or suppression by other cells. Using a mouse sarcoma model, we show that glucose consumption by tumors metabolically restricts T cells, leading to their dampened mTOR activity,...
Gespeichert in:
Veröffentlicht in: | Cell 2015-09, Vol.162 (6), p.1229-1241 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Failure of T cells to protect against cancer is thought to result from lack of antigen recognition, chronic activation, and/or suppression by other cells. Using a mouse sarcoma model, we show that glucose consumption by tumors metabolically restricts T cells, leading to their dampened mTOR activity, glycolytic capacity, and IFN-γ production, thereby allowing tumor progression. We show that enhancing glycolysis in an antigenic “regressor” tumor is sufficient to override the protective ability of T cells to control tumor growth. We also show that checkpoint blockade antibodies against CTLA-4, PD-1, and PD-L1, which are used clinically, restore glucose in tumor microenvironment, permitting T cell glycolysis and IFN-γ production. Furthermore, we found that blocking PD-L1 directly on tumors dampens glycolysis by inhibiting mTOR activity and decreasing expression of glycolysis enzymes, reflecting a role for PD-L1 in tumor glucose utilization. Our results establish that tumor-imposed metabolic restrictions can mediate T cell hyporesponsiveness during cancer.
[Display omitted]
•Tumor cells and TILs compete for glucose within the tumor niche•Metabolic competition can drive cancer progression•Checkpoint blockade antibodies alter the metabolic balance in a tumor•PD-L1 promotes Akt/mTOR activation and glycolysis in tumor cells
Glucose consumption by antigenic tumors can metabolically restrict T cells, directly dampening their effector function and allowing tumor progression. Checkpoint blockade therapy may correct this resource imbalance through a direct effect in the tumor cells. |
---|---|
ISSN: | 0092-8674 1097-4172 |
DOI: | 10.1016/j.cell.2015.08.016 |