Development of a Tunable LED-Based Colorimetric Source

A novel, spectrally tunable light-source utilizing light emitting diodes (LEDs) for radiometric, photometric, and colorimetric applications is described. The tunable source can simulate standard sources and can be used as a transfer source to propagate photometric and colorimetric scales from calibr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of research of the National Institute of Standards and Technology 2002-07, Vol.107 (4), p.363-371
Hauptverfasser: Brown, Steven W, Santana, Carlos, Eppeldauer, George P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel, spectrally tunable light-source utilizing light emitting diodes (LEDs) for radiometric, photometric, and colorimetric applications is described. The tunable source can simulate standard sources and can be used as a transfer source to propagate photometric and colorimetric scales from calibrated reference instruments to test artifacts with minimal increase in uncertainty. In this prototype source, 40 LEDs with 10 different spectral distributions were mounted onto an integrating sphere. A voltage-to-current control circuit was designed and implemented, enabling independent control of the current sent to each set of four LEDs. The LEDs have been characterized for stability and dependence on drive current. The prototype source demonstrates the feasibility of development of a spectrally tunable LED source using LEDs with up to 40 different spectral distributions. Simulations demonstrate that such a source would be able to approximate standard light-source distributions over the visible spectral range-from 380 nm to 780 nm-with deviations on the order of 2 %. The tunable LED source can also simulate spectral distributions of special sources such as discharge lamps and display monitors. With this tunable source, a test instrument can be rapidly calibrated against a variety of different source distributions tailored to the anticipated uses of the artifact. Target uncertainties for the calibration of test artifacts are less than 2 % in luminance and 0.002 in chromaticity for any source distribution.
ISSN:1044-677X
2165-7254
DOI:10.6028/jres.107.029