ChromNet: Learning the human chromatin network from all ENCODE ChIP-seq data

A cell's epigenome arises from interactions among regulatory factors-transcription factors and histone modifications-co-localized at particular genomic regions. We developed a novel statistical method, ChromNet, to infer a network of these interactions, the chromatin network, by inferring condi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology 2016-04, Vol.17 (79), p.82-82, Article 82
Hauptverfasser: Lundberg, Scott M, Tu, William B, Raught, Brian, Penn, Linda Z, Hoffman, Michael M, Lee, Su-In
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A cell's epigenome arises from interactions among regulatory factors-transcription factors and histone modifications-co-localized at particular genomic regions. We developed a novel statistical method, ChromNet, to infer a network of these interactions, the chromatin network, by inferring conditional-dependence relationships among a large number of ChIP-seq data sets. We applied ChromNet to all available 1451 ChIP-seq data sets from the ENCODE Project, and showed that ChromNet revealed previously known physical interactions better than alternative approaches. We experimentally validated one of the previously unreported interactions, MYC-HCFC1. An interactive visualization tool is available at http://chromnet.cs.washington.edu.
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-016-0925-0