Functional and Transcriptional Characterization of Histone Deacetylase Inhibitor‐Mediated Cardiac Adverse Effects in Human Induced Pluripotent Stem Cell‐Derived Cardiomyocytes

Patients treated with histone deacetylase (HDAC) inhibitors, which are used for some cancers, neurological diseases, and immune disorders, can experience various cardiac adverse events. This study found that human induced pluripotent stem cell‐derived cardiomyocytes can predict cardiac adverse event...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stem cells translational medicine 2016-05, Vol.5 (5), p.602-612
Hauptverfasser: Kopljar, Ivan, Gallacher, David J., De Bondt, An, Cougnaud, Laure, Vlaminckx, Eddy, Van den Wyngaert, Ilse, Lu, Hua Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Patients treated with histone deacetylase (HDAC) inhibitors, which are used for some cancers, neurological diseases, and immune disorders, can experience various cardiac adverse events. This study found that human induced pluripotent stem cell‐derived cardiomyocytes can predict cardiac adverse events in patients caused by HDAC inhibitors. Histone deacetylase (HDAC) inhibitors possess therapeutic potential to reverse aberrant epigenetic changes associated with cancers, neurological diseases, and immune disorders. Unfortunately, clinical studies with some HDAC inhibitors displayed delayed cardiac adverse effects, such as atrial fibrillation and ventricular tachycardia. However, the underlying molecular mechanism(s) of HDAC inhibitor‐mediated cardiotoxicity remains poorly understood and is difficult to detect in the early stages of preclinical drug development because of a delayed onset of effects. In the present study, we show for the first time in human induced pluripotent stem cell‐derived cardiomyocytes (hiPS‐CMs) that HDAC inhibitors (dacinostat, panobinostat, vorinostat, entinostat, and tubastatin‐a) induce delayed dose‐related cardiac dysfunction at therapeutic concentrations associated with cardiac adverse effects in humans. HDAC inhibitor‐mediated delayed effects on the beating properties of hiPS‐CMs developed after 12 hours by decreasing the beat rate, shortening the field potential duration, and inducing arrhythmic behavior under form of sustained contractions and fibrillation‐like patterns. Transcriptional changes that are common between the cardiotoxic HDAC inhibitors but different from noncardiotoxic treatments identified cardiac‐specific genes and pathways related to structural and functional changes in cardiomyocytes. Combining the functional data with epigenetic changes in hiPS‐CMs allowed us to identify molecular targets that might explain HDAC inhibitor‐mediated cardiac adverse effects in humans. Therefore, hiPS‐CMs represent a valuable translational model to assess HDAC inhibitor‐mediated cardiotoxicity and support identification of better HDAC inhibitors with an improved benefit‐risk profile. Significance Histone deacetylase (HDAC) inhibitors are a promising class of drugs to treat certain cancers, autoimmune, and neurodegenerative diseases. However, treated patients can experience various cardiac adverse events such as hearth rhythm disorders. This study found that human induced pluripotent stem cell‐derived cardiomyocytes (hiPS‐CMs) can
ISSN:2157-6564
2157-6580
DOI:10.5966/sctm.2015-0279