Identification of Drosophila-based endpoints for the assessment and understanding of xenobiotic-mediated male reproductive adversities

Men are at risk of becoming completely infertile due to innumerable environmental chemicals and pollutants. These xenobiotics, hence, should be tested for their potential adverse effects on male fertility. However, the testing load, a monumental challenge for employing conventional animal models, co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicological sciences 2014-09, Vol.141 (1), p.278-291
Hauptverfasser: Misra, Snigdha, Singh, Anshuman, C H, Ratnasekhar, Sharma, Vandana, Reddy Mudiam, Mohana Krishna, Ram, Kristipati Ravi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Men are at risk of becoming completely infertile due to innumerable environmental chemicals and pollutants. These xenobiotics, hence, should be tested for their potential adverse effects on male fertility. However, the testing load, a monumental challenge for employing conventional animal models, compels the pursuit of alternative models. Towards this direction, we show here that Drosophila melanogaster, an invertebrate, with its well characterized/conserved male reproductive processes/proteome, recapitulates male reproductive toxicity phenotypes observed in mammals when exposed to a known reproductive toxicant, dibutyl phthalate (DBP). Analogous to mammals, exposure to DBP reduced fertility, sperm counts, seminal proteins, increased oxidative modification/damage in reproductive tract proteins and altered the activity of a hormone receptor (estrogen related receptor) in Drosophila males. In addition, we show here that DBP is metabolized to monobutyl phthalate (MBP) in exposed Drosophila males and that MBP is more toxic than DBP, as observed in higher organisms. These findings suggest Drosophila as a potential alternative to traditional animal models for the prescreening of chemicals for their reproductive adversities and also to gain mechanistic insights into chemical-mediated endocrine disruption and male infertility.
ISSN:1096-6080
1096-0929
DOI:10.1093/toxsci/kfu125