Generalized Manning Condensation Model Captures the RNA Ion Atmosphere
RNA is highly sensitive to the ionic environment and typically requires Mg(2+) to form compact structures. There is a need for models capable of describing the ion atmosphere surrounding RNA with quantitative accuracy. We present a model of RNA electrostatics and apply it within coarse-grained molec...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2015-06, Vol.114 (25), p.258105-258105 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | RNA is highly sensitive to the ionic environment and typically requires Mg(2+) to form compact structures. There is a need for models capable of describing the ion atmosphere surrounding RNA with quantitative accuracy. We present a model of RNA electrostatics and apply it within coarse-grained molecular dynamics simulation. The model treats Mg(2+) ions explicitly to account for ion-ion correlations neglected by mean-field theories. Since mean-field theories capture KCl well, it is treated implicitly by a generalized Manning counterion condensation model. The model extends Manning condensation to deal with arbitrary RNA conformations, nonlimiting KCl concentrations, and the ion inaccessible volume of RNA. The model is tested against experimental measurements of the excess Mg(2+) associated with the RNA, Γ(2+), because Γ(2+) is directly related to the Mg(2+)-RNA interaction free energy. The excellent agreement with experiment demonstrates that the model captures the ionic dependence of the RNA free energy landscape. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.114.258105 |