Ischemia reperfusion-facilitated sinusoidal endothelial cell injury in liver transplantation and the resulting impact of extravasated platelet aggregation

Summary Background The exact sequence of events leading to ultimate hepatocellular damage following ischemia/reperfusion (I/R) is incompletely understood. In this article, we review a mechanism of organ dysfunction after hepatic I/R or immunosuppressive treatment, in addition to the potential of liv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European surgery 2016-04, Vol.48 (2), p.92-98
Hauptverfasser: Miyashita, T., Nakanuma, S., Ahmed, A.K., Makino, I., Hayashi, H., Oyama, K., Nakagawara, H., Tajima, H., Takamura, H., Ninomiya, I., Fushida, S., Harmon, J.W., Ohta, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Background The exact sequence of events leading to ultimate hepatocellular damage following ischemia/reperfusion (I/R) is incompletely understood. In this article, we review a mechanism of organ dysfunction after hepatic I/R or immunosuppressive treatment, in addition to the potential of liver sinusoidal endothelial cell (LSEC) protection and antiplatelet treatment for the suppression of hepatocellular damage. Methods A review of the literature, utilizing PubMed-NCBI, was used to provide information on the components necessary for the development of hepatocellular damage following I/R. Results It is well-established that LSECs damage following hepatic I/R or immunosuppressive treatment followed by extravasated platelet aggregation (EPA) is the root cause of organ dysfunction in liver transplantation. We have classified three phases, from LSECs damage to organ dysfunction, utilizing the predicted pathogenic mechanism of sinusoidal obstruction syndrome. The first phase is detachment of LSECs and sinusoidal wall destruction after LSECs injury by hepatic I/R or immunosuppressive treatment. The second phase is EPA, accomplished by sinusoidal wall destruction. The various growth factors, including thromboxane A2, serotonin, transforming growth factor-beta and plasminogen activator inhibitor-1, released by EPA in the Disse’s space of zone three, induce portal hypertension and the progression of hepatic fibrosis. The third phase is organ dysfunction following portal hypertension, hepatic fibrosis, and suppressed liver regeneration through various growth factors secreted by EPA. Conclusion We suggest that EPA in the space of Disse, initiated by LSECs damage due to hepatic I/R or immunosuppressive treatment, and activated platelets may primarily contribute to liver damage in liver transplantation. Endothelial protective therapy or antiplatelet treatment may be useful in the treatment of hepatic I/R following EPA.
ISSN:1682-8631
1682-4016
DOI:10.1007/s10353-015-0363-3