Evaluation of bias associated with high-multiplex, target-specific pre-amplification

We developed a novel PCR-based pre-amplification (PreAmp) technology that can increase the abundance of over 350 target genes one million-fold. To assess potential bias introduced by PreAmp we utilized ERCC RNA reference standards, a model system that quantifies measurement error in RNA analysis. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomolecular detection and quantification 2016-01, Vol.6, p.13-21
Hauptverfasser: Okino, Steven T., Kong, Michelle, Sarras, Haya, Wang, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We developed a novel PCR-based pre-amplification (PreAmp) technology that can increase the abundance of over 350 target genes one million-fold. To assess potential bias introduced by PreAmp we utilized ERCC RNA reference standards, a model system that quantifies measurement error in RNA analysis. We assessed three types of bias: amplification bias, dynamic range bias and fold-change bias. We show that our PreAmp workflow introduces only minimal amplification and fold-change bias under stringent conditions. We do detect dynamic range bias if a target gene is highly abundant and PreAmp occurred for 16 or more PCR cycles; however, this type of bias is easily correctable. To assess PreAmp bias in a gene expression profiling experiment, we analyzed a panel of genes that are regulated during differentiation using the NTera2 stem cell model system. We find that results generated using PreAmp are similar to results obtained using standard qPCR (without the pre-amplification step). Importantly, PreAmp maintains patterns of gene expression changes across samples; the same biological insights would be derived from a PreAmp experiment as with a standard gene expression profiling experiment. We conclude that our PreAmp technology can facilitate analysis of extremely limited samples in gene expression quantification experiments.
ISSN:2214-7535
2214-7535
DOI:10.1016/j.bdq.2015.12.001