Dopaminergic Neurons Exhibit an Age-Dependent Decline in Electrophysiological Parameters in the MitoPark Mouse Model of Parkinson's Disease

Dopaminergic neurons of the substantia nigra (SN) play a vital role in everyday tasks, such as reward-related behavior and voluntary movement, and excessive loss of these neurons is a primary hallmark of Parkinson's disease (PD). Mitochondrial dysfunction has long been implicated in PD and many...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2016-04, Vol.36 (14), p.4026-4037
Hauptverfasser: Branch, Sarah Y, Chen, Cang, Sharma, Ramaswamy, Lechleiter, James D, Li, Senlin, Beckstead, Michael J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dopaminergic neurons of the substantia nigra (SN) play a vital role in everyday tasks, such as reward-related behavior and voluntary movement, and excessive loss of these neurons is a primary hallmark of Parkinson's disease (PD). Mitochondrial dysfunction has long been implicated in PD and many animal models induce parkinsonian features by disrupting mitochondrial function. MitoPark mice are a recently developed genetic model of PD that lacks the gene for mitochondrial transcription factor A specifically in dopaminergic neurons. This model mimics many distinct characteristics of PD including progressive and selective loss of SN dopamine neurons, motor deficits that are improved byl-DOPA, and development of inclusion bodies. Here, we used brain slice electrophysiology to construct a timeline of functional decline in SN dopaminergic neurons from MitoPark mice. Dopaminergic neurons from MitoPark mice exhibited decreased cell capacitance and increased input resistance that became more severe with age. Pacemaker firing regularity was disrupted in MitoPark mice and ion channel conductances associated with firing were decreased. Additionally, dopaminergic neurons from MitoPark mice showed a progressive decrease of endogenous dopamine levels, decreased dopamine release, and smaller D2 dopamine receptor-mediated outward currents. Interestingly, expression of ion channel subunits associated with impulse activity (Cav1.2, Cav1.3, HCN1, Nav1.2, and NavB3) was upregulated in older MitoPark mice. The results describe alterations in intrinsic and synaptic properties of dopaminergic neurons in MitoPark mice occurring at ages both before and concurrent with motor impairment. These findings may help inform future investigations into treatment targets for prodromal PD. Parkinson's disease (PD) is the second most diagnosed neurodegenerative disorder, and the classic motor symptoms of the disease are attributed to selective loss of dopaminergic neurons of the substantia nigra. The MitoPark mouse is a genetic model of PD that mimics many of the key characteristics of the disease and enables the study of progressive neurodegeneration in parkinsonism. Here we have identified functional deficits in the ion channel physiology of dopaminergic neurons from MitoPark mice that both precede and are concurrent with the time course of behavioral symptomatology. Because PD is a progressive disease with a long asymptomatic phase, identification of early functional adaptations could lay the
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.1395-15.2016