Anti-inflammatory Therapy With Simvastatin Improves Neuroinflammation and CNS Function in a Mouse Model of Metachromatic Leukodystrophy

Metachromatic leukodystrophy (MLD) is a lysosomal storage disease caused by a functional deficiency of the lysosomal enzyme arylsulfatase A. The prevailing late-infantile variant of MLD is characterized by widespread and progressive demyelination of the central nervous system (CNS) causing death dur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular therapy 2015-07, Vol.23 (7), p.1160-1168
Hauptverfasser: Stein, Axel, Stroobants, Stijn, Gieselmann, Volkmar, D'Hooge, Rudi, Matzner, Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metachromatic leukodystrophy (MLD) is a lysosomal storage disease caused by a functional deficiency of the lysosomal enzyme arylsulfatase A. The prevailing late-infantile variant of MLD is characterized by widespread and progressive demyelination of the central nervous system (CNS) causing death during childhood. In order to gain insight into the pathomechanism of the disease and to identify novel therapeutic targets, we analyzed neuroinflammation in two mouse models reproducing a mild, nondemyelinating, and a more severe, demyelinating, variant of MLD, respectively. Microgliosis and upregulation of cytokine/chemokine levels were clearly more pronounced in the demyelinating model. The analysis of the temporal cytokine/chemokine profiles revealed that the onset of demyelination is preceded by a sustained elevation of the macrophage inflammatory protein (MIP)-1α followed by an upregulation of MIP-1β, monocyte chemotactic protein (MCP)-1, and several interleukins. The tumor necrosis factor (TNF)-α remains unchanged. Treatment of the demyelinating mouse model with the nonsteroidal anti-inflammatory drug simvastatin reduced neuroinflammation, improved the swimming performance and ataxic gait, and retarded demyelination of the spinal cord. Our data suggest that neuroinflammation is causative for demyelination in MLD mice and that anti-inflammatory treatment might be a novel therapeutic option to improve the CNS function of MLD patients.
ISSN:1525-0016
1525-0024
DOI:10.1038/mt.2015.69