Quantum oscillations from generic surface Fermi arcs and bulk chiral modes in Weyl semimetals
We re-examine the question of quantum oscillations from surface Fermi arcs and chiral modes in Weyl semimetals. By introducing two tools - semiclassical phase-space quantization and a numerical implementation of a layered construction of Weyl semimetals - we discover several important generalization...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-04, Vol.6 (1), p.23741-23741, Article 23741 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We re-examine the question of quantum oscillations from surface Fermi arcs and chiral modes in Weyl semimetals. By introducing two tools - semiclassical phase-space quantization and a numerical implementation of a layered construction of Weyl semimetals - we discover several important generalizations to previous conclusions that were implicitly tailored to the special case of identical Fermi arcs on top and bottom surfaces. We show that the phase-space quantization picture fixes an ambiguity in the previously utilized energy-time quantization approach and correctly reproduces the numerically calculated quantum oscillations for generic Weyl semimetals with distinctly curved Fermi arcs on the two surfaces. Based on these methods, we identify a ‘magic’ magnetic-field angle where quantum oscillations become independent of sample thickness, with striking experimental implications. We also analyze the stability of these quantum oscillations to disorder and show that the high-field oscillations are expected to persist in samples whose thickness parametrically exceeds the quantum mean free path. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep23741 |