Dynamic treatment effects

This paper develops robust models for estimating and interpreting treatment effects arising from both ordered and unordered multi-stage decision problems. Identification is secured through instrumental variables and/or conditional independence (matching) assumptions. We decompose treatment effects i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2016-04, Vol.191 (2), p.276-292
Hauptverfasser: Heckman, James J., Humphries, John Eric, Veramendi, Gregory
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper develops robust models for estimating and interpreting treatment effects arising from both ordered and unordered multi-stage decision problems. Identification is secured through instrumental variables and/or conditional independence (matching) assumptions. We decompose treatment effects into direct effects and continuation values associated with moving to the next stage of a decision problem. Using our framework, we decompose the IV estimator, showing that IV generally does not estimate economically interpretable or policy-relevant parameters in prototypical dynamic discrete choice models, unless policy variables are instruments. Continuation values are an empirically important component of estimated total treatment effects of education. We use our analysis to estimate the components of what LATE estimates in a dynamic discrete choice model.
ISSN:0304-4076
1872-6895
DOI:10.1016/j.jeconom.2015.12.001