Aromatic residues in RNase T stack with nucleobases to guide the sequence‐specific recognition and cleavage of nucleic acids

RNase T is a classical member of the DEDDh family of exonucleases with a unique sequence preference in that its 3′‐to‐5′ exonuclease activity is blocked by a 3′‐terminal dinucleotide CC in digesting both single‐stranded RNA and DNA. Our previous crystal structure analysis of RNase T‐DNA complexes sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein science 2015-12, Vol.24 (12), p.1934-1941
Hauptverfasser: Duh, Yulander, Hsiao, Yu‐Yuan, Li, Chia‐Lung, Huang, Jason C., Yuan, Hanna S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RNase T is a classical member of the DEDDh family of exonucleases with a unique sequence preference in that its 3′‐to‐5′ exonuclease activity is blocked by a 3′‐terminal dinucleotide CC in digesting both single‐stranded RNA and DNA. Our previous crystal structure analysis of RNase T‐DNA complexes show that four phenylalanine residues, F29, F77, F124, and F146, stack with the two 3′‐terminal nucleobases. To elucidate if the π–π stacking interactions between aromatic residues and nucleobases play a critical role in sequence‐specific protein–nucleic acid recognition, here we mutated two to four of the phenylalanine residues in RNase T to tryptophan (W mutants) and tyrosine (Y mutants). The Escherichia coli strains expressing either the W mutants or the Y mutants had slow growth phenotypes, suggesting that all of these mutants could not fully substitute the function of the wild‐type RNase T in vivo. DNA digestion assays revealed W mutants shared similar sequence specificity with wild‐type RNase T. However, the Y mutants exhibited altered sequence‐dependent activity, digesting ssDNA with both 3′‐end CC and GG sequences. Moreover, the W and Y mutants had reduced DNA‐binding activity and lower thermal stability as compared to wild‐type RNase T. Taken together, our results suggest that the four phenylalanine residues in RNase T not only play critical roles in sequence‐specific recognition, but also in overall protein stability. Our results provide the first evidence showing that the π−π stacking interactions between nucleobases and protein aromatic residues may guide the sequence‐specific activity for DNA and RNA enzymes.
ISSN:0961-8368
1469-896X
DOI:10.1002/pro.2800