Updates in the pathophysiological mechanisms of Parkinson’s disease: Emerging role of bone marrow mesenchymal stem cells
AIM: To explore the approaches exerted by mesenchymal stem cells(MSCs) to improve Parkinson’s disease(PD) pathophysiology.METHODS: MSCs were harvested from bone marrowof femoral bones of male rats, grown and propagated in culture. Twenty four ovariectomized animals were classified into 3 groups: Gro...
Gespeichert in:
Veröffentlicht in: | World journal of stem cells 2016-03, Vol.8 (3), p.106-117 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | AIM: To explore the approaches exerted by mesenchymal stem cells(MSCs) to improve Parkinson’s disease(PD) pathophysiology.METHODS: MSCs were harvested from bone marrowof femoral bones of male rats, grown and propagated in culture. Twenty four ovariectomized animals were classified into 3 groups: Group(1) was control, Groups(2) and(3) were subcutaneously administered with rotenone for 14 d after one month of ovariectomy for induction of PD. Then, Group(2) was left untreated, while Group(3) was treated with single intravenous dose of bone marrow derived MSCs(BM-MSCs). SRY gene was assessed by PCR in brain tissue of the female rats. Serum transforming growth factor beta-1(TGF-β1), monocyte chemoattractant protein-1(MCP-1) and brain derived neurotrophic factor(BDNF) levels were assayed by ELISA. Brain dopamine DA level was assayed fluorometrically, while brain tyrosine hydroxylase(TH) and nestin gene expression were detected by semi-quantitative real time PCR. Brain survivin expression was determined by immunohistochemical procedure. Histopathological investigation of brain tissues was also done.RESULTS: BM-MSCs were able to home at the injured brains and elicited significant decrease in serum TGF-β1(489.7 ± 13.0 vs 691.2 ± 8.0, P < 0.05) and MCP-1(89.6 ± 2.0 vs 112.1 ± 1.9, P < 0.05) levels associated with significant increase in serum BDNF(3663 ± 17.8 vs 2905 ± 72.9, P < 0.05) and brain DA(874 ± 15.0 vs 599 ± 9.8, P < 0.05) levels as well as brain TH(1.18 ± 0.004 vs 0.54 ± 0.009, P < 0.05) and nestin(1.29 ± 0.005 vs 0.67 ± 0.006, P < 0.05) genes expression levels. In addition to, producing insignificant increase in the number of positive cells for survivin(293.2 ± 15.9 vs 271.5 ± 15.9, P > 0.05) expression. Finally, the brain sections showed intact histological structure of the striatum as a result of treatment with BM-MSCs. CONCLUSION: The current study sheds light on the therapeutic potential of BM-MSCs against PD pathophysiology via multi-mechanistic actions. |
---|---|
ISSN: | 1948-0210 1948-0210 |
DOI: | 10.4252/wjsc.v8.i3.106 |