Transfer Learning across Feature-Rich Heterogeneous Feature Spaces via Feature-Space Remapping (FSR)
Transfer learning aims to improve performance on a target task by utilizing previous knowledge learned from source tasks. In this paper we introduce a novel heterogeneous transfer learning technique, Feature- Space Remapping (FSR), which transfers knowledge between domains with different feature spa...
Gespeichert in:
Veröffentlicht in: | ACM transactions on intelligent systems and technology 2015-04, Vol.6 (1), p.1-27 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Transfer learning aims to improve performance on a target task by utilizing previous knowledge learned from source tasks. In this paper we introduce a novel heterogeneous transfer learning technique, Feature- Space Remapping (FSR), which transfers knowledge between domains with different feature spaces. This is accomplished without requiring typical feature-feature, feature instance, or instance-instance co-occurrence data. Instead we relate features in different feature-spaces through the construction of meta-features. We show how these techniques can utilize multiple source datasets to construct an ensemble learner which further improves performance. We apply FSR to an activity recognition problem and a document classification problem. The ensemble technique is able to outperform all other baselines and even performs better than a classifier trained using a large amount of labeled data in the target domain. These problems are especially difficult because in addition to having different feature-spaces, the marginal probability distributions and the class labels are also different. This work extends the state of the art in transfer learning by considering large transfer across dramatically different spaces. |
---|---|
ISSN: | 2157-6904 2157-6912 |
DOI: | 10.1145/2629528 |