Transient analysis of the Erlang A model

We consider the Erlang A model, or M / M / m + M queue, with Poisson arrivals, exponential service times, and m parallel servers, and the property that waiting customers abandon the queue after an exponential time. The queue length process is in this case a birth–death process, for which we obtain e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods of operations research (Heidelberg, Germany) Germany), 2015-10, Vol.82 (2), p.143-173
Hauptverfasser: Knessl, Charles, van Leeuwaarden, Johan S. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the Erlang A model, or M / M / m + M queue, with Poisson arrivals, exponential service times, and m parallel servers, and the property that waiting customers abandon the queue after an exponential time. The queue length process is in this case a birth–death process, for which we obtain explicit expressions for the Laplace transforms of the time-dependent distribution and the first passage time. These two transient characteristics were generally presumed to be intractable. Solving for the Laplace transforms involves using Green’s functions and contour integrals related to hypergeometric functions. Our results are specialized to the M / M / ∞ queue, the M  /  M  /  m queue, and the M  /  M  /  m  /  m loss model. We also obtain some corresponding results for diffusion approximations to these models.
ISSN:1432-2994
1432-5217
DOI:10.1007/s00186-015-0498-9