Loss of Fancc Impairs Antibody-Secreting Cell Differentiation in Mice through Deregulating the Wnt Signaling Pathway
Fanconi anemia (FA) is characterized by a progressive bone marrow failure and an increased incidence of cancer. FA patients have high susceptibility to immune-related complications such as infection and posttransplant graft-versus-host disease. In this study, we investigated the effect of FA deficie...
Gespeichert in:
Veröffentlicht in: | The Journal of immunology (1950) 2016-04, Vol.196 (7), p.2986-2994 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fanconi anemia (FA) is characterized by a progressive bone marrow failure and an increased incidence of cancer. FA patients have high susceptibility to immune-related complications such as infection and posttransplant graft-versus-host disease. In this study, we investigated the effect of FA deficiency in B cell function using the Fancc mouse model. Fancc(-/-) B cells show a specific defect in IgG2a switch and impaired Ab-secreting cell (ASC) differentiation. Global transcriptome analysis of naive B cells by mRNA sequencing demonstrates that FA deficiency deregulates a network of genes involved in immune function. Significantly, many genes implicated in Wnt signaling were aberrantly expressed in Fancc(-/-) B cells. Consistently, Fancc(-/-) B cells accumulate high levels of β-catenin under both resting and stimulated conditions, suggesting hyperactive Wnt signaling. Using an in vivo Wnt GFP reporter assay, we verified the upregulation of Wnt signaling as a potential mechanism responsible for the impaired Fancc(-/-) B cell differentiation. Furthermore, we showed that Wnt signaling inhibits ASC differentiation possibly through repression of Blimp1 and that Fancc(-/-) B cells are hypersensitive to Wnt activation during ASC differentiation. Our findings identify Wnt signaling as a physiological regulator of ASC differentiation and establish a role for the Wnt pathway in normal B cell function and FA immune deficiency. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.1501056 |