Investigating microbial co-occurrence patterns based on metagenomic compositional data

The high-throughput sequencing technologies have provided a powerful tool to study the microbial organisms living in various environments. Characterizing microbial interactions can give us insights into how they live and work together as a community. Metagonomic data are usually summarized in a comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2015-10, Vol.31 (20), p.3322-3329
Hauptverfasser: Ban, Yuguang, An, Lingling, Jiang, Hongmei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The high-throughput sequencing technologies have provided a powerful tool to study the microbial organisms living in various environments. Characterizing microbial interactions can give us insights into how they live and work together as a community. Metagonomic data are usually summarized in a compositional fashion due to varying sampling/sequencing depths from one sample to another. We study the co-occurrence patterns of microbial organisms using their relative abundance information. Analyzing compositional data using conventional correlation methods has been shown prone to bias that leads to artifactual correlations. We propose a novel method, regularized estimation of the basis covariance based on compositional data (REBACCA), to identify significant co-occurrence patterns by finding sparse solutions to a system with a deficient rank. To be specific, we construct the system using log ratios of count or proportion data and solve the system using the l1-norm shrinkage method. Our comprehensive simulation studies show that REBACCA (i) achieves higher accuracy in general than the existing methods when a sparse condition is satisfied; (ii) controls the false positives at a pre-specified level, while other methods fail in various cases and (iii) runs considerably faster than the existing comparable method. REBACCA is also applied to several real metagenomic datasets. The R codes for the proposed method are available at http://faculty.wcas.northwestern.edu/∼hji403/REBACCA.htm hongmei@northwestern.edu Supplementary data are available at Bioinformatics online.
ISSN:1367-4803
1367-4811
1460-2059
DOI:10.1093/bioinformatics/btv364