Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data

Advances in high-throughput sequencing technologies now allow for large-scale characterization of B cell immunoglobulin (Ig) repertoires. The high germline and somatic diversity of the Ig repertoire presents challenges for biologically meaningful analysis, which requires specialized computational me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2015-10, Vol.31 (20), p.3356-3358
Hauptverfasser: Gupta, Namita T, Vander Heiden, Jason A, Uduman, Mohamed, Gadala-Maria, Daniel, Yaari, Gur, Kleinstein, Steven H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advances in high-throughput sequencing technologies now allow for large-scale characterization of B cell immunoglobulin (Ig) repertoires. The high germline and somatic diversity of the Ig repertoire presents challenges for biologically meaningful analysis, which requires specialized computational methods. We have developed a suite of utilities, Change-O, which provides tools for advanced analyses of large-scale Ig repertoire sequencing data. Change-O includes tools for determining the complete set of Ig variable region gene segment alleles carried by an individual (including novel alleles), partitioning of Ig sequences into clonal populations, creating lineage trees, inferring somatic hypermutation targeting models, measuring repertoire diversity, quantifying selection pressure, and calculating sequence chemical properties. All Change-O tools utilize a common data format, which enables the seamless integration of multiple analyses into a single workflow. Change-O is freely available for non-commercial use and may be downloaded from http://clip.med.yale.edu/changeo. steven.kleinstein@yale.edu.
ISSN:1367-4803
1367-4811
1460-2059
DOI:10.1093/bioinformatics/btv359