Targeted next-generation sequencing identification of mutations in patients with disorders of sex development
The identification of causative mutations is important for treatment decisions and genetic counseling of patients with disorders of sex development (DSD). Here, we designed a new assay based on targeted next-generation sequencing (NGS) to diagnose these genetically heterogeneous disorders. All codin...
Gespeichert in:
Veröffentlicht in: | BMC medical genetics 2016-03, Vol.17 (1), p.23-23, Article 23 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The identification of causative mutations is important for treatment decisions and genetic counseling of patients with disorders of sex development (DSD). Here, we designed a new assay based on targeted next-generation sequencing (NGS) to diagnose these genetically heterogeneous disorders.
All coding regions and flanking sequences of 219 genes implicated in DSD were designed to be included on a panel. A total of 45 samples were used for sex chromosome dosage validation by targeted sequencing using the NGS platform. Among these, 21 samples were processed to find the causative mutation.
The sex chromosome dosages of all 45 samples in this assay were concordant with their corresponding karyotyping results. Among the 21 DSD patients, a total of 11 mutations in SRY, NR0B1, AR, CYP17A1, GK, CHD7, and SRD5A2 were identified, including five single nucleotide variants, three InDels, one in-frame duplication, one SRY-positive 46,XX, and one gross duplication with an estimated size of more than 427,038 bp containing NR0B1 and GK. We also identified six novel mutations: c.230_231insA in SRY, c.7389delA in CHD7, c.273C>G in NR0B1, and c.2158G>A, c.1825A>G, and c.2057_2065dupTGTGTGCTG in AR.
Our assay was able to make a genetic diagnosis for eight DSD patients (38.1%), and identified variants of uncertain clinical significance in the other three cases (14.3%). Targeted NGS is therefore a comprehensive and efficient method to diagnose DSD. This work also expands the pathogenic mutation spectrum of DSD. |
---|---|
ISSN: | 1471-2350 1471-2350 |
DOI: | 10.1186/s12881-016-0286-2 |