Utility of linking primary care electronic medical records with Canadian census data to study the determinants of chronic disease: an example based on socioeconomic status and obesity
Electronic medical records (EMRs) used in primary care contain a breadth of data that can be used in public health research. Patient data from EMRs could be linked with other data sources, such as a postal code linkage with Census data, to obtain additional information on environmental determinants...
Gespeichert in:
Veröffentlicht in: | BMC medical informatics and decision making 2016-03, Vol.16 (32), p.32-32, Article 32 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electronic medical records (EMRs) used in primary care contain a breadth of data that can be used in public health research. Patient data from EMRs could be linked with other data sources, such as a postal code linkage with Census data, to obtain additional information on environmental determinants of health. While promising, successful linkages between primary care EMRs with geographic measures is limited due to ethics review board concerns. This study tested the feasibility of extracting full postal code from primary care EMRs and linking this with area-level measures of the environment to demonstrate how such a linkage could be used to examine the determinants of disease. The association between obesity and area-level deprivation was used as an example to illustrate inequalities of obesity in adults.
The analysis included EMRs of 7153 patients aged 20 years and older who visited a single, primary care site in 2011. Extracted patient information included demographics (date of birth, sex, postal code) and weight status (height, weight). Information extraction and management procedures were designed to mitigate the risk of individual re-identification when extracting full postal code from source EMRs. Based on patients' postal codes, area-based deprivation indexes were created using the smallest area unit used in Canadian censuses. Descriptive statistics and socioeconomic disparity summary measures of linked census and adult patients were calculated.
The data extraction of full postal code met technological requirements for rendering health information extracted from local EMRs into anonymized data. The prevalence of obesity was 31.6 %. There was variation of obesity between deprivation quintiles; adults in the most deprived areas were 35 % more likely to be obese compared with adults in the least deprived areas (Chi-Square = 20.24(1), p |
---|---|
ISSN: | 1472-6947 1472-6947 |
DOI: | 10.1186/s12911-016-0272-9 |