A robust distribution-free test for genetic association studies of quantitative traits

In association studies of quantitative traits, the association of each genetic marker with the trait of interest is typically tested using the -test assuming an additive genetic model. In practice, the true model is rarely known, and specifying an incorrect model can lead to a loss of power. For cas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical applications in genetics and molecular biology 2015-11, Vol.14 (5), p.443-464
Hauptverfasser: Kozlitina, Julia, Schucany, William R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In association studies of quantitative traits, the association of each genetic marker with the trait of interest is typically tested using the -test assuming an additive genetic model. In practice, the true model is rarely known, and specifying an incorrect model can lead to a loss of power. For case-control studies, the maximum of test statistics optimal for additive, dominant, and recessive models has been shown to be robust to model misspecification. The approach has later been extended to quantitative traits. However, the existing procedures assume that the trait is normally distributed and may not maintain correct type I error rates and can also have reduced power when the assumption of normality is violated. Here, we introduce a maximum (MAX3) test that is based on ranks and is therefore distribution-free. We examine the behavior of the proposed method using a Monte Carlo simulation with both normal and non-normal data and compare the results to the usual parametric procedures and other nonparametric alternatives. We show that the rank-based maximum test has favorable properties relative to other tests, especially in the case of symmetric distributions with heavy tails. We illustrate the method with data from a real association study of symmetric dimethylarginine (SDMA).
ISSN:2194-6302
1544-6115
DOI:10.1515/sagmb-2014-0050