Predicting the occurrence of major adverse cardiac events within 30 days of a vascular surgery: an empirical comparison of the minimum p value method and ROC curve approach using individual patient data meta-analysis

We aimed to compare the minimum p value method and the area under the receiver operating characteristics (ROC) curve approach to categorize continuous biomarkers for the prediction of postoperative 30-day major adverse cardiac events in noncardiac vascular surgery patients. Individual-patient data f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SpringerPlus 2016-03, Vol.5 (1), p.304-304, Article 304
Hauptverfasser: Vanniyasingam, Thuva, Rodseth, Reitze N., Lurati Buse, Giovanna A., Bolliger, Daniel, Burkhart, Christoph S., Cuthbertson, Brian H., Gibson, Simon C., Mahla, Elisabeth, Leibowitz, David W., Biccard, Bruce M., Thabane, Lehana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 304
container_issue 1
container_start_page 304
container_title SpringerPlus
container_volume 5
creator Vanniyasingam, Thuva
Rodseth, Reitze N.
Lurati Buse, Giovanna A.
Bolliger, Daniel
Burkhart, Christoph S.
Cuthbertson, Brian H.
Gibson, Simon C.
Mahla, Elisabeth
Leibowitz, David W.
Biccard, Bruce M.
Thabane, Lehana
description We aimed to compare the minimum p value method and the area under the receiver operating characteristics (ROC) curve approach to categorize continuous biomarkers for the prediction of postoperative 30-day major adverse cardiac events in noncardiac vascular surgery patients. Individual-patient data from six cohorts reporting B-type natriuretic peptide (BNP) or N-terminal pro-B-type natriuretic peptide (NTproBNP) were obtained. These biomarkers were dichotomized using the minimum p value method and compared with previously reported ROC curve-derived thresholds using logistic regression analysis. A final prediction model was developed, internally validated, and assessed for its sensitivity to clustering effects. Finally, a preoperative risk score system was proposed. Thresholds identified by the minimum p value method and ROC curve approach were 115.57 pg/ml (p 
doi_str_mv 10.1186/s40064-016-1936-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4783313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1780813071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-eaad25bcc8beb0ffd2613cdb1c2a882b93eb4240d3fb1a76172e002f08b9a2013</originalsourceid><addsrcrecordid>eNp1UtuK1TAULaI4wzgf4IsEfPGlmkunzfFBkIM3GBgRfQ67ye5pDm1Sk6bD-Ru_xb_wb0w543AUzEt22GutvTZZRfGU0ZeMyfpVrCitq5KyumQbUZfyQXHOc1UySdnDk_qsuIxxT_OpG1Y19HFxxhta10LI8-LX54DG6tm6HZl7JF7rFAI6ncuOjLD3gYBZMEQkGoKxoAku6OZIbu3cW0cE_fnDwCGueCALRJ0GCCSmsMNweE3AERwnG6yGgWg_ThBs9G6FrwNH6-yYRjJl6pDyG-fem8wy5MvNlmQ3CxKYpuBB9yTF1ah1xi7WpCw4wWyzG2JghpULJTgYDtHGJ8WjDoaIl3f3RfHt_buv24_l9c2HT9u316W-EvVcIoDhV63WssWWdp3hNRPatExzkJK3G4FtxStqRNcyaGrWcKSUd1S2G-CUiYvizVF3Su2IRmc3AQY1BTtCOCgPVv3dcbZXO7-oqpFCMJEFXtwJBP89YZzVaKPGYQCHPkXFGkklE7RZZz3_B7r3KeSFV1STreX_XgXZEaWDjzFgd2-GUbVmRx2zo3J21JodJTPn2ekW94w_SckAfgTE3HL5a09G_1f1N_L-1co</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771721803</pqid></control><display><type>article</type><title>Predicting the occurrence of major adverse cardiac events within 30 days of a vascular surgery: an empirical comparison of the minimum p value method and ROC curve approach using individual patient data meta-analysis</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Vanniyasingam, Thuva ; Rodseth, Reitze N. ; Lurati Buse, Giovanna A. ; Bolliger, Daniel ; Burkhart, Christoph S. ; Cuthbertson, Brian H. ; Gibson, Simon C. ; Mahla, Elisabeth ; Leibowitz, David W. ; Biccard, Bruce M. ; Thabane, Lehana</creator><creatorcontrib>Vanniyasingam, Thuva ; Rodseth, Reitze N. ; Lurati Buse, Giovanna A. ; Bolliger, Daniel ; Burkhart, Christoph S. ; Cuthbertson, Brian H. ; Gibson, Simon C. ; Mahla, Elisabeth ; Leibowitz, David W. ; Biccard, Bruce M. ; Thabane, Lehana</creatorcontrib><description>We aimed to compare the minimum p value method and the area under the receiver operating characteristics (ROC) curve approach to categorize continuous biomarkers for the prediction of postoperative 30-day major adverse cardiac events in noncardiac vascular surgery patients. Individual-patient data from six cohorts reporting B-type natriuretic peptide (BNP) or N-terminal pro-B-type natriuretic peptide (NTproBNP) were obtained. These biomarkers were dichotomized using the minimum p value method and compared with previously reported ROC curve-derived thresholds using logistic regression analysis. A final prediction model was developed, internally validated, and assessed for its sensitivity to clustering effects. Finally, a preoperative risk score system was proposed. Thresholds identified by the minimum p value method and ROC curve approach were 115.57 pg/ml (p &lt; 0.001) and 116 pg/ml for BNP, and 241.7 pg/ml (p = 0.001) and 277.5 pg/ml for NTproBNP, respectively. The minimum p value thresholds were slightly stronger predictors based on our logistic regression analysis. The final model included a composite predictor of the minimum p value method’s BNP and NTproBNP thresholds [odds ratio (OR) = 8.5, p &lt; 0.001], surgery type (OR = 2.5, p = 0.002), and diabetes (OR = 2.1, p = 0.015). Preoperative risks using the scoring system ranged from 2 to 49 %. The minimum p value method and ROC curve approach identify similar optimal thresholds. We propose to replace the revised cardiac risk index with our risk score system for individual-specific preoperative risk stratification after noncardiac nonvascular surgery.</description><identifier>ISSN: 2193-1801</identifier><identifier>EISSN: 2193-1801</identifier><identifier>DOI: 10.1186/s40064-016-1936-8</identifier><identifier>PMID: 27066338</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Humanities and Social Sciences ; Medicine ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>SpringerPlus, 2016-03, Vol.5 (1), p.304-304, Article 304</ispartof><rights>Vanniyasingam et al. 2016</rights><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-eaad25bcc8beb0ffd2613cdb1c2a882b93eb4240d3fb1a76172e002f08b9a2013</citedby><cites>FETCH-LOGICAL-c536t-eaad25bcc8beb0ffd2613cdb1c2a882b93eb4240d3fb1a76172e002f08b9a2013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783313/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783313/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27066338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vanniyasingam, Thuva</creatorcontrib><creatorcontrib>Rodseth, Reitze N.</creatorcontrib><creatorcontrib>Lurati Buse, Giovanna A.</creatorcontrib><creatorcontrib>Bolliger, Daniel</creatorcontrib><creatorcontrib>Burkhart, Christoph S.</creatorcontrib><creatorcontrib>Cuthbertson, Brian H.</creatorcontrib><creatorcontrib>Gibson, Simon C.</creatorcontrib><creatorcontrib>Mahla, Elisabeth</creatorcontrib><creatorcontrib>Leibowitz, David W.</creatorcontrib><creatorcontrib>Biccard, Bruce M.</creatorcontrib><creatorcontrib>Thabane, Lehana</creatorcontrib><title>Predicting the occurrence of major adverse cardiac events within 30 days of a vascular surgery: an empirical comparison of the minimum p value method and ROC curve approach using individual patient data meta-analysis</title><title>SpringerPlus</title><addtitle>SpringerPlus</addtitle><addtitle>Springerplus</addtitle><description>We aimed to compare the minimum p value method and the area under the receiver operating characteristics (ROC) curve approach to categorize continuous biomarkers for the prediction of postoperative 30-day major adverse cardiac events in noncardiac vascular surgery patients. Individual-patient data from six cohorts reporting B-type natriuretic peptide (BNP) or N-terminal pro-B-type natriuretic peptide (NTproBNP) were obtained. These biomarkers were dichotomized using the minimum p value method and compared with previously reported ROC curve-derived thresholds using logistic regression analysis. A final prediction model was developed, internally validated, and assessed for its sensitivity to clustering effects. Finally, a preoperative risk score system was proposed. Thresholds identified by the minimum p value method and ROC curve approach were 115.57 pg/ml (p &lt; 0.001) and 116 pg/ml for BNP, and 241.7 pg/ml (p = 0.001) and 277.5 pg/ml for NTproBNP, respectively. The minimum p value thresholds were slightly stronger predictors based on our logistic regression analysis. The final model included a composite predictor of the minimum p value method’s BNP and NTproBNP thresholds [odds ratio (OR) = 8.5, p &lt; 0.001], surgery type (OR = 2.5, p = 0.002), and diabetes (OR = 2.1, p = 0.015). Preoperative risks using the scoring system ranged from 2 to 49 %. The minimum p value method and ROC curve approach identify similar optimal thresholds. We propose to replace the revised cardiac risk index with our risk score system for individual-specific preoperative risk stratification after noncardiac nonvascular surgery.</description><subject>Humanities and Social Sciences</subject><subject>Medicine</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2193-1801</issn><issn>2193-1801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UtuK1TAULaI4wzgf4IsEfPGlmkunzfFBkIM3GBgRfQ67ye5pDm1Sk6bD-Ru_xb_wb0w543AUzEt22GutvTZZRfGU0ZeMyfpVrCitq5KyumQbUZfyQXHOc1UySdnDk_qsuIxxT_OpG1Y19HFxxhta10LI8-LX54DG6tm6HZl7JF7rFAI6ncuOjLD3gYBZMEQkGoKxoAku6OZIbu3cW0cE_fnDwCGueCALRJ0GCCSmsMNweE3AERwnG6yGgWg_ThBs9G6FrwNH6-yYRjJl6pDyG-fem8wy5MvNlmQ3CxKYpuBB9yTF1ah1xi7WpCw4wWyzG2JghpULJTgYDtHGJ8WjDoaIl3f3RfHt_buv24_l9c2HT9u316W-EvVcIoDhV63WssWWdp3hNRPatExzkJK3G4FtxStqRNcyaGrWcKSUd1S2G-CUiYvizVF3Su2IRmc3AQY1BTtCOCgPVv3dcbZXO7-oqpFCMJEFXtwJBP89YZzVaKPGYQCHPkXFGkklE7RZZz3_B7r3KeSFV1STreX_XgXZEaWDjzFgd2-GUbVmRx2zo3J21JodJTPn2ekW94w_SckAfgTE3HL5a09G_1f1N_L-1co</recordid><startdate>20160309</startdate><enddate>20160309</enddate><creator>Vanniyasingam, Thuva</creator><creator>Rodseth, Reitze N.</creator><creator>Lurati Buse, Giovanna A.</creator><creator>Bolliger, Daniel</creator><creator>Burkhart, Christoph S.</creator><creator>Cuthbertson, Brian H.</creator><creator>Gibson, Simon C.</creator><creator>Mahla, Elisabeth</creator><creator>Leibowitz, David W.</creator><creator>Biccard, Bruce M.</creator><creator>Thabane, Lehana</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160309</creationdate><title>Predicting the occurrence of major adverse cardiac events within 30 days of a vascular surgery: an empirical comparison of the minimum p value method and ROC curve approach using individual patient data meta-analysis</title><author>Vanniyasingam, Thuva ; Rodseth, Reitze N. ; Lurati Buse, Giovanna A. ; Bolliger, Daniel ; Burkhart, Christoph S. ; Cuthbertson, Brian H. ; Gibson, Simon C. ; Mahla, Elisabeth ; Leibowitz, David W. ; Biccard, Bruce M. ; Thabane, Lehana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-eaad25bcc8beb0ffd2613cdb1c2a882b93eb4240d3fb1a76172e002f08b9a2013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Humanities and Social Sciences</topic><topic>Medicine</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vanniyasingam, Thuva</creatorcontrib><creatorcontrib>Rodseth, Reitze N.</creatorcontrib><creatorcontrib>Lurati Buse, Giovanna A.</creatorcontrib><creatorcontrib>Bolliger, Daniel</creatorcontrib><creatorcontrib>Burkhart, Christoph S.</creatorcontrib><creatorcontrib>Cuthbertson, Brian H.</creatorcontrib><creatorcontrib>Gibson, Simon C.</creatorcontrib><creatorcontrib>Mahla, Elisabeth</creatorcontrib><creatorcontrib>Leibowitz, David W.</creatorcontrib><creatorcontrib>Biccard, Bruce M.</creatorcontrib><creatorcontrib>Thabane, Lehana</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>SpringerPlus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vanniyasingam, Thuva</au><au>Rodseth, Reitze N.</au><au>Lurati Buse, Giovanna A.</au><au>Bolliger, Daniel</au><au>Burkhart, Christoph S.</au><au>Cuthbertson, Brian H.</au><au>Gibson, Simon C.</au><au>Mahla, Elisabeth</au><au>Leibowitz, David W.</au><au>Biccard, Bruce M.</au><au>Thabane, Lehana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the occurrence of major adverse cardiac events within 30 days of a vascular surgery: an empirical comparison of the minimum p value method and ROC curve approach using individual patient data meta-analysis</atitle><jtitle>SpringerPlus</jtitle><stitle>SpringerPlus</stitle><addtitle>Springerplus</addtitle><date>2016-03-09</date><risdate>2016</risdate><volume>5</volume><issue>1</issue><spage>304</spage><epage>304</epage><pages>304-304</pages><artnum>304</artnum><issn>2193-1801</issn><eissn>2193-1801</eissn><abstract>We aimed to compare the minimum p value method and the area under the receiver operating characteristics (ROC) curve approach to categorize continuous biomarkers for the prediction of postoperative 30-day major adverse cardiac events in noncardiac vascular surgery patients. Individual-patient data from six cohorts reporting B-type natriuretic peptide (BNP) or N-terminal pro-B-type natriuretic peptide (NTproBNP) were obtained. These biomarkers were dichotomized using the minimum p value method and compared with previously reported ROC curve-derived thresholds using logistic regression analysis. A final prediction model was developed, internally validated, and assessed for its sensitivity to clustering effects. Finally, a preoperative risk score system was proposed. Thresholds identified by the minimum p value method and ROC curve approach were 115.57 pg/ml (p &lt; 0.001) and 116 pg/ml for BNP, and 241.7 pg/ml (p = 0.001) and 277.5 pg/ml for NTproBNP, respectively. The minimum p value thresholds were slightly stronger predictors based on our logistic regression analysis. The final model included a composite predictor of the minimum p value method’s BNP and NTproBNP thresholds [odds ratio (OR) = 8.5, p &lt; 0.001], surgery type (OR = 2.5, p = 0.002), and diabetes (OR = 2.1, p = 0.015). Preoperative risks using the scoring system ranged from 2 to 49 %. The minimum p value method and ROC curve approach identify similar optimal thresholds. We propose to replace the revised cardiac risk index with our risk score system for individual-specific preoperative risk stratification after noncardiac nonvascular surgery.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>27066338</pmid><doi>10.1186/s40064-016-1936-8</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2193-1801
ispartof SpringerPlus, 2016-03, Vol.5 (1), p.304-304, Article 304
issn 2193-1801
2193-1801
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4783313
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects Humanities and Social Sciences
Medicine
multidisciplinary
Science
Science (multidisciplinary)
title Predicting the occurrence of major adverse cardiac events within 30 days of a vascular surgery: an empirical comparison of the minimum p value method and ROC curve approach using individual patient data meta-analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T10%3A09%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20occurrence%20of%20major%20adverse%20cardiac%20events%20within%2030%C2%A0days%20of%20a%20vascular%20surgery:%20an%20empirical%20comparison%20of%20the%20minimum%20p%20value%20method%20and%20ROC%20curve%20approach%20using%20individual%20patient%20data%20meta-analysis&rft.jtitle=SpringerPlus&rft.au=Vanniyasingam,%20Thuva&rft.date=2016-03-09&rft.volume=5&rft.issue=1&rft.spage=304&rft.epage=304&rft.pages=304-304&rft.artnum=304&rft.issn=2193-1801&rft.eissn=2193-1801&rft_id=info:doi/10.1186/s40064-016-1936-8&rft_dat=%3Cproquest_pubme%3E1780813071%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1771721803&rft_id=info:pmid/27066338&rfr_iscdi=true