Quality by design approach for simultaneous estimation of doxycycline hyclate and curcumin by RP-HPLC method

A simple, rapid, reliable, robust and optimized reversed phase high performance liquid chromatographic method for simultaneous estimation of doxycycline hyclate and curcumin was successfully developed and validated as per International Conference on Harmonization guidelines. The objective was achiev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of pharmaceutical sciences 2015-11, Vol.77 (6), p.723-728
Hauptverfasser: Dhal, C, Ahmad, F, Chauhan, A, Jyothi, M, Singh, R, Saini, P, Mathur, S, Singh, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A simple, rapid, reliable, robust and optimized reversed phase high performance liquid chromatographic method for simultaneous estimation of doxycycline hyclate and curcumin was successfully developed and validated as per International Conference on Harmonization guidelines. The objective was achieved in terms of well separated peaks within 10 min on a Waters Sunfire C8 column with dimensions of 250×4.6 mm, particle size 5.0 μm using mobile phase consisting of 30 volumes of potassium dihydrogen phosphate buffer (50 mM) adjusted to pH 6.5±0.1 with triethylamine and 70 volumes of methanol at flow rate of 0.85 ml/min. The column effluents were monitored at 400 nm maintained at ambient column temperature (28o). The developed method was found linear over the concentration range of 200-700 μg/ml for doxycycline hyclate and 8-28 μg/ml for curcumin, the detection and quantitation limit was found to be 26.063 and 78.97 μg/ml for doxycycline hyclate; 0.795 and 2.13 μg/ml for curcumin, respectively. The developed method was optimized using Minitab software version 16 to meet the current quality by design requirements. The method validation was done for linearity, range, detection and quantitation limit, accuracy, precision, specificity, system suitability testing, and robustness.
ISSN:0250-474X
1998-3743
DOI:10.4103/0250-474X.174992