Synergistic antioxidant activity of resveratrol with genistein in high-glucose treated Madin-Darby canine kidney epithelial cells

Resveratrol (Re), a stilbenoid, is associated with a potential benefit in controlling certain biomarkers in type II diabetes. Genistein (Ge), a phytoestrogen, may act as an antioxidant and thus may diminish damaging effects of free radicals in tissues. In the present study, a potential synergistic a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical reports 2016-03, Vol.4 (3), p.349-354
Hauptverfasser: CHU, CHISHIH, LU, FUNG-JOU, YEH, RANG-HUI, LI, ZIH-LING, CHEN, CHING-HSEIN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Resveratrol (Re), a stilbenoid, is associated with a potential benefit in controlling certain biomarkers in type II diabetes. Genistein (Ge), a phytoestrogen, may act as an antioxidant and thus may diminish damaging effects of free radicals in tissues. In the present study, a potential synergistic antioxidant effect of an Re/Ge combination on high-glucose (HG) incubation in Madin-Darby canine kidney (MDCK) epithelial cells was evaluated. Compared with the treatment of Re or Ge alone, the Re/Ge combination synergistically decreased intracellular reactive oxygen species (ROS) and hydroxyl radicals in MDCK cells. This synergistic antioxidant effect correlated with the inhibition of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression and an increase in γ-glutamylcysteine synthetase expression. In addition, mitochondrial complex I, NADPH oxidase, xanthine oxidase and lipoxygenase contributed towards ROS overproduction when the MDCK cells were incubated with HG. In conclusion, the Re/Ge combination synergistically enhanced the antioxidant effect in HG-incubated kidney cells, possibly through an enhanced antioxidant regulation mechanism. The Re/Ge combination may be a potential benefit against oxidative stress in diabetes mellitus.
ISSN:2049-9434
2049-9442
DOI:10.3892/br.2016.573