Production of Chemokine/Chemokine Receptor Complexes for Structural Biophysical Studies

The development of methods for expression and purification of seven-transmembrane receptors has led to an increase in structural and biophysical data and greatly improved the understanding of receptor structure and function. For chemokine receptors, this has been highlighted by the determination of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods in enzymology 2016-01, Vol.570, p.233-260
Hauptverfasser: Gustavsson, Martin, Zheng, Yi, Handel, Tracy M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of methods for expression and purification of seven-transmembrane receptors has led to an increase in structural and biophysical data and greatly improved the understanding of receptor structure and function. For chemokine receptors, this has been highlighted by the determination of crystal structures of CXCR4 and CCR5 in complex with small-molecule antagonists, followed recently by two receptor/chemokine complexes; CXCR4 in complex with vMIP-II and US28 in complex with the CX3CL1. However, these studies cover only a few of the many chemokines and chemokine receptors and production of stable receptor/chemokine complexes remains a challenging task. Here, we present a method for producing purified complexes between chemokine receptors and chemokines by coexpression in Sf9 cells. Using the complex between atypical chemokine receptor 3 and its native chemokine CXCL12 as an example, we describe the virus production, protein expression, and purification process as well as reconstitution into different membrane mimics. This method provides an efficient way of producing pure receptor/chemokine complexes and has been used to successfully produce receptor/chemokine complexes for CXC as well as CC receptors.
ISSN:0076-6879
1557-7988
DOI:10.1016/bs.mie.2015.10.003