Releasing Activity Disengages Cohesin’s Smc3/Scc1 Interface in a Process Blocked by Acetylation
Sister chromatid cohesion conferred by entrapment of sister DNAs within a tripartite ring formed between cohesin’s Scc1, Smc1, and Smc3 subunits is created during S and destroyed at anaphase through Scc1 cleavage by separase. Cohesin’s association with chromosomes is controlled by opposing activitie...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2016-02, Vol.61 (4), p.563-574 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sister chromatid cohesion conferred by entrapment of sister DNAs within a tripartite ring formed between cohesin’s Scc1, Smc1, and Smc3 subunits is created during S and destroyed at anaphase through Scc1 cleavage by separase. Cohesin’s association with chromosomes is controlled by opposing activities: loading by Scc2/4 complex and release by a separase-independent releasing activity as well as by cleavage. Coentrapment of sister DNAs at replication is accompanied by acetylation of Smc3 by Eco1, which blocks releasing activity and ensures that sisters remain connected. Because fusion of Smc3 to Scc1 prevents release and bypasses the requirement for Eco1, we suggested that release is mediated by disengagement of the Smc3/Scc1 interface. We show that mutations capable of bypassing Eco1 in Smc1, Smc3, Scc1, Wapl, Pds5, and Scc3 subunits reduce dissociation of N-terminal cleavage fragments of Scc1 (NScc1) from Smc3. This process involves interaction between Smc ATPase heads and is inhibited by Smc3 acetylation.
[Display omitted]
•Releasing activity disengages cohesin’s Smc3/Scc1 interface•Releasing activity requires an interaction between the SMC ATPase domains•Smc3 acetylation inhibits releasing activity
Cohesin entraps sister DNAs within a ring formed by its Scc1, Smc1, and Smc3 subunits. Beckouët et el. have shown that cohesin’s release from the DNA is mediated by disengagement of the Smc3/Scc1 interface. This process involves interaction between the SMC ATPase heads and is inhibited by Smc3 acetylation. |
---|---|
ISSN: | 1097-2765 1097-4164 |
DOI: | 10.1016/j.molcel.2016.01.026 |