Evidence That Links Loss of Cyclooxygenase-2 With Increased Asymmetric Dimethylarginine: Novel Explanation of Cardiovascular Side Effects Associated With Anti-Inflammatory Drugs

BACKGROUND—Cardiovascular side effects associated with cyclooxygenase-2 inhibitor drugs dominate clinical concern. Cyclooxygenase-2 is expressed in the renal medulla where inhibition causes fluid retention and increased blood pressure. However, the mechanisms linking cyclooxygenase-2 inhibition and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation (New York, N.Y.) N.Y.), 2015-02, Vol.131 (7), p.633-642
Hauptverfasser: Ahmetaj-Shala, Blerina, Kirkby, Nicholas S, Knowles, Rebecca, Al’Yamani, Malak, Mazi, Sarah, Wang, Zhen, Tucker, Arthur T, Mackenzie, Louise, Armstrong, Paul C J, Nüsing, Rolf M, Tomlinson, James A P, Warner, Timothy D, Leiper, James, Mitchell, Jane A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BACKGROUND—Cardiovascular side effects associated with cyclooxygenase-2 inhibitor drugs dominate clinical concern. Cyclooxygenase-2 is expressed in the renal medulla where inhibition causes fluid retention and increased blood pressure. However, the mechanisms linking cyclooxygenase-2 inhibition and cardiovascular events are unknown and no biomarkers have been identified. METHODS AND RESULTS—Transcriptome analysis of wild-type and cyclooxygenase-2 mouse tissues revealed 1 gene altered in the heart and aorta, but >1000 genes altered in the renal medulla, including those regulating the endogenous nitric oxide synthase inhibitors asymmetrical dimethylarginine (ADMA) and monomethyl-L-arginine. Cyclo-oxygenase-2 mice had increased plasma levels of ADMA and monomethyl-L-arginine and reduced endothelial nitric oxide responses. These genes and methylarginines were not similarly altered in mice lacking prostacyclin receptors. Wild-type mice or human volunteers taking cyclooxygenase-2 inhibitors also showed increased plasma ADMA. Endothelial nitric oxide is cardio-protective, reducing thrombosis and atherosclerosis. Consequently, increased ADMA is associated with cardiovascular disease. Thus, our study identifies ADMA as a biomarker and mechanistic bridge between renal cyclooxygenase-2 inhibition and systemic vascular dysfunction with nonsteroidal anti-inflammatory drug usage. CONCLUSIONS—We identify the endogenous endothelial nitric oxide synthase inhibitor ADMA as a biomarker and mechanistic bridge between renal cyclooxygenase-2 inhibition and systemic vascular dysfunction.
ISSN:0009-7322
1524-4539
DOI:10.1161/CIRCULATIONAHA.114.011591