A clickable psoralen to directly quantify DNA interstrand crosslinking and repair
[Display omitted] DNA interstrand crosslinks (ICLs) represent physical obstacles to advancing replication forks and transcription complexes. A range of ICL-inducing agents have successfully been incorporated into cancer therapeutics. While studies have adopted UVA-activated psoralens as model ICL-in...
Gespeichert in:
Veröffentlicht in: | Bioorganic & medicinal chemistry 2016-03, Vol.24 (5), p.1071-1078 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
DNA interstrand crosslinks (ICLs) represent physical obstacles to advancing replication forks and transcription complexes. A range of ICL-inducing agents have successfully been incorporated into cancer therapeutics. While studies have adopted UVA-activated psoralens as model ICL-inducing agents for investigating ICL repair, direct detection of the lesion has often been tempered by tagging the psoralen scaffold with a relatively large reporter group that may perturb the biological activity of the parent psoralen. Here a minimally-modified psoralen probe was prepared featuring a small alkyne handle suitable for click chemistry. The psoralen probe, designated 8-propargyloxypsoralen (8-POP), can be activated by UVA in vitro to generate ICLs that are susceptible to post-labeling with an azide-tagged fluorescent reporter via a copper-catalyzed reaction. A modified alkaline comet assay demonstrated that UVA-activated 8-POP proficiently generated ICLs in cells. Cellular 8-POP–DNA lesions were amenable to click-mediated ligation to fluorescent reporters in situ, which permitted their detection and quantitation by fluorescence microscopy and flow cytometry. Small molecule DNA repair inhibitors to 8-POP-treated cells attenuated the removal of 8-POP–DNA lesions, validating 8-POP as an appropriate probe for investigating cellular ICL repair. The post-labeling strategy applied in this study is inexpensive, rapid and highly modular in nature with the potential for multiple applications in DNA repair studies. |
---|---|
ISSN: | 0968-0896 1464-3391 |
DOI: | 10.1016/j.bmc.2016.01.032 |