Protonation drives the conformational switch in the multidrug transporter LmrP

Substrate binding to the multidrug exporter LmrP from Lactococcus lactis catalyzes proton entrance by stabilizing an outward-open conformation. Transitions between conformational states are dictated by proton passage down the transmembrane helical bundle. Multidrug antiporters of the major facilitat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemical biology 2014-02, Vol.10 (2), p.149-155
Hauptverfasser: Masureel, Matthieu, Martens, Chloé, Stein, Richard A, Mishra, Smriti, Ruysschaert, Jean-Marie, Mchaourab, Hassane S, Govaerts, Cédric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Substrate binding to the multidrug exporter LmrP from Lactococcus lactis catalyzes proton entrance by stabilizing an outward-open conformation. Transitions between conformational states are dictated by proton passage down the transmembrane helical bundle. Multidrug antiporters of the major facilitator superfamily couple proton translocation to the extrusion of cytotoxic molecules. The conformational changes that underlie the transport cycle and the structural basis of coupling of these transporters have not been elucidated. Here we used extensive double electron-electron resonance measurements to uncover the conformational equilibrium of LmrP, a multidrug transporter from Lactococcus lactis , and to investigate how protons and ligands shift this equilibrium to enable transport. We find that the transporter switches between outward-open and outward-closed conformations, depending on the protonation states of specific acidic residues forming a transmembrane protonation relay. Our data can be framed in a model of transport wherein substrate binding initiates the transport cycle by opening the extracellular side. Subsequent protonation of membrane-embedded acidic residues induces substrate release to the extracellular side and triggers a cascade of conformational changes that concludes in proton release to the intracellular side.
ISSN:1552-4450
1552-4469
DOI:10.1038/nchembio.1408