Boosting the Transparency of Thin Layers by Coatings of Opposing Susceptibility: How Metals Help See Through Dielectrics

We propose a hypothesis that a very thin layer can be made more transparent by adding a thin coating with susceptibility of opposing sign. Two experimental tests backed by a theoretical model support this hypothesis. First, we show that the visible and near-infrared transmission through a semi-trans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-02, Vol.6 (1), p.20659-20659, Article 20659
Hauptverfasser: Shakhs, Mohammed Al, Augusto, Lucian, Markley, Loïc, Chau, Kenneth J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a hypothesis that a very thin layer can be made more transparent by adding a thin coating with susceptibility of opposing sign. Two experimental tests backed by a theoretical model support this hypothesis. First, we show that the visible and near-infrared transmission through a semi-transparent silver film can be enhanced by up to ~70% and spectrally tailored depending on the type and thickness of the dielectric coating. Material types explored as dielectric coating layers include conventional metal oxides (titanium dioxide) and lesser-explored elemental semiconductors (undoped silicon, p-type silicon and germanium). Second and more surprisingly, we show that coating a 50-nm-thick silicon nitride membrane with a 10-nm-thick silver layer can modestly enhance the transmission by up to 6 ± 1% in the blue part of the spectrum. Transmission enhancements are observed for three silver-coated membranes in different configurations. Thinner silver coatings are theoretically capable of enhancement factors greater than 10%, but implementation is restricted by challenges in making smooth and continuous silver films below 10 nm in thickness. This study is important because it is the first demonstration of reciprocity with respect to the transmission enhancements achieved by combining thin metallic and dielectric layers.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep20659