Non-thermal plasma induces AKT degradation through turn-on the MUL1 E3 ligase in head and neck cancer

Recent research on non-thermal plasma (NTP, an ionized gas) has identified it as a novel cancer therapeutic tool. However, the molecular mechanism remains unclear. In this study, we demonstrated NTP induced cell death of head and neck cancer (HNC) through the AKT ubiquitin-proteasome system. NTP inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncotarget 2015-10, Vol.6 (32), p.33382-33396
Hauptverfasser: Kim, Sun-Yong, Kim, Haeng-Jun, Kang, Sung Un, Kim, Yang Eun, Park, Ju Kyeong, Shin, Yoo Seob, Kim, Yeon Soo, Lee, Keunho, Kim, Chul-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent research on non-thermal plasma (NTP, an ionized gas) has identified it as a novel cancer therapeutic tool. However, the molecular mechanism remains unclear. In this study, we demonstrated NTP induced cell death of head and neck cancer (HNC) through the AKT ubiquitin-proteasome system. NTP increased the gene expression of mitochondrial E3 ubiquitin protein ligase 1 (MUL1), an E3 ligase for AKT, and NTP-induced HNC cell death was prevented by MUL1 siRNA. We also showed that MUL1 inhibited the level of AKT and p-AKT and MUL1 expression was increased by NTP-induced ROS. Furthermore, we optimized and manufactured a new type of NTP, a liquid type of NTP (LTP). In syngeneic and xenograft in vivo tumor models, LTP inhibited tumor progression by increasing the MUL1 level and reducing p-AKT levels, indicating that LTP also has an anti-cancer effect through the same mechanism as that of NTP. Taken together, our results suggest that NTP and LTP have great potential for HNC therapy.
ISSN:1949-2553
1949-2553
DOI:10.18632/oncotarget.5407