In vivo kinematics of a unique posterior-stabilized knee implant during a stepping exercise
Stair-stepping motion is important in daily living, similar to gait. Knee prostheses need to have even more superior performance and stability in stair-stepping motion than in gait. The purpose of this analysis was to estimate in vivo knee motion in stair stepping and determine if this unique knee p...
Gespeichert in:
Veröffentlicht in: | Journal of orthopaedic surgery and research 2016-02, Vol.11 (18), p.18-18, Article 18 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stair-stepping motion is important in daily living, similar to gait. Knee prostheses need to have even more superior performance and stability in stair-stepping motion than in gait. The purpose of this analysis was to estimate in vivo knee motion in stair stepping and determine if this unique knee prosthesis function as designed.
A total of 20 patients with Bi-Surface posterior-stabilizing (PS) implants were assessed. The Bi-Surface PS knee is a posterior-cruciate substitute prosthesis with a unique ball-and-socket joint in the mid-posterior portion of the femoral and tibial components. Patients were examined during stair-stepping motion using a 2-dimensional to 3-dimensional registration technique.
The kinematic pattern in step up was a medial pivot, in which the level of anteroposterior translation was very small. In step down, the kinematic pattern was neither a pivot shift nor a rollback. From minimum to maximum flexion, anterior femoral translation occurred slightly.
In this study, this unique implant had good joint stability during stair stepping. The joint's stability during stair stepping was affected by the design of the femorotibial joint rather than post/cam engagement or the ball-and-socket joint. |
---|---|
ISSN: | 1749-799X 1749-799X |
DOI: | 10.1186/s13018-016-0354-5 |