Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation
Light isotopes separation, such as 3 He/ 4 He, H 2 /D 2 , H 2 /T 2, etc ., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productiv...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-01, Vol.6 (1), p.19952-19952, Article 19952 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Light isotopes separation, such as
3
He/
4
He, H
2
/D
2
, H
2
/T
2,
etc
., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as
3
He/
4
He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high
3
He/
4
He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H
2
/D
2
, H
2
/T
2
. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep19952 |