Venturing in coral larval chimerism: a compact functional domain with fostered genotypic diversity

The globally distributed coral species Pocillopora damicornis is known to release either sexual or asexual derived planula-larvae in various reef locations. Using microsatellite loci as markers, we documented the release of asexually derived chimeric larvae (CL), originating from mosaicked maternal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-01, Vol.6 (1), p.19493-19493, Article 19493
Hauptverfasser: Rinkevich, Baruch, Shaish, Lee, Douek, Jacob, Ben-Shlomo, Rachel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The globally distributed coral species Pocillopora damicornis is known to release either sexual or asexual derived planula-larvae in various reef locations. Using microsatellite loci as markers, we documented the release of asexually derived chimeric larvae (CL), originating from mosaicked maternal colonies that were also chimeras, at Thai and Philippines reefs. The CL, each presenting different combinations of maternal genotypic constituents, create genetically-complex sets of asexual propagules. This novel mode of inheritance in corals challenges classical postulations of sexual/asexual reproduction traits, as asexual derived CL represent an alliance between genotypes that significantly sways the recruits’ absolute fitness. This type of inherited chimerism, while enhancing intra-entity genetic heterogeneity, is an evolutionary tactic used to increase genetic-heterogeneity, primarily in new areas colonized by a limited number of larvae. Chimerism may also facilitate combat global change impacts by exhibiting adjustable genomic combinations of within-chimera traits that could withstand alterable environmental pressures, helping Pocillopora become a successful cosmopolitan species.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep19493