Applying Novel Methods for Assessing Individual- and Neighborhood-Level Social and Psychosocial Environment Interactions with Genetic Factors in the Prediction of Depressive Symptoms in the Multi-Ethnic Study of Atherosclerosis
Complex illnesses, like depression, are thought to arise from the interplay between psychosocial stressors and genetic predispositions. Approaches that take into account both personal and neighborhood factors and that consider gene regions as well as individual SNPs may be necessary to capture these...
Gespeichert in:
Veröffentlicht in: | Behavior genetics 2016-01, Vol.46 (1), p.89-99 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Complex illnesses, like depression, are thought to arise from the interplay between psychosocial stressors and genetic predispositions. Approaches that take into account both personal and neighborhood factors and that consider gene regions as well as individual SNPs may be necessary to capture these interactions across race and ethnic groups. We used novel gene-region based analysis methods [Sequence Kernel Association Test (SKAT) and meta-analysis (MetaSKAT), gene-environment set association test (GESAT)], as well as traditional linear models to identify gene region and SNP × psychosocial factor interactions at the individual- and neighborhood-level, across multiple race/ethnicities. Multiple regions identified in SKAT analyses showed evidence of a significant gene-region association with averaged depressive symptom scores across race/ethnicity (MetaSKAT p values |
---|---|
ISSN: | 0001-8244 1573-3297 |
DOI: | 10.1007/s10519-015-9734-6 |