Applying Novel Methods for Assessing Individual- and Neighborhood-Level Social and Psychosocial Environment Interactions with Genetic Factors in the Prediction of Depressive Symptoms in the Multi-Ethnic Study of Atherosclerosis

Complex illnesses, like depression, are thought to arise from the interplay between psychosocial stressors and genetic predispositions. Approaches that take into account both personal and neighborhood factors and that consider gene regions as well as individual SNPs may be necessary to capture these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Behavior genetics 2016-01, Vol.46 (1), p.89-99
Hauptverfasser: Ware, Erin B., Smith, Jennifer A., Mukherjee, Bhramar, Lee, Seunggeun, Kardia, Sharon L. R., Diez-Roux, Ana V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Complex illnesses, like depression, are thought to arise from the interplay between psychosocial stressors and genetic predispositions. Approaches that take into account both personal and neighborhood factors and that consider gene regions as well as individual SNPs may be necessary to capture these interactions across race and ethnic groups. We used novel gene-region based analysis methods [Sequence Kernel Association Test (SKAT) and meta-analysis (MetaSKAT), gene-environment set association test (GESAT)], as well as traditional linear models to identify gene region and SNP × psychosocial factor interactions at the individual- and neighborhood-level, across multiple race/ethnicities. Multiple regions identified in SKAT analyses showed evidence of a significant gene-region association with averaged depressive symptom scores across race/ethnicity (MetaSKAT p values
ISSN:0001-8244
1573-3297
DOI:10.1007/s10519-015-9734-6