OPTIMA: sensitive and accurate whole-genome alignment of error-prone genomic maps by combinatorial indexing and technology-agnostic statistical analysis
Abstract Background Resolution of complex repeat structures and rearrangements in the assembly and analysis of large eukaryotic genomes is often aided by a combination of high-throughput sequencing and genome-mapping technologies (for example, optical restriction mapping). In particular, mapping tec...
Gespeichert in:
Veröffentlicht in: | GigaScience 2016-01, Vol.5 (1), p.2-2 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Background
Resolution of complex repeat structures and rearrangements in the assembly and analysis of large eukaryotic genomes is often aided by a combination of high-throughput sequencing and genome-mapping technologies (for example, optical restriction mapping). In particular, mapping technologies can generate sparse maps of large DNA fragments (150 kilo base pairs (kbp) to 2 Mbp) and thus provide a unique source of information for disambiguating complex rearrangements in cancer genomes. Despite their utility, combining high-throughput sequencing and mapping technologies has been challenging because of the lack of efficient and sensitive map-alignment algorithms for robustly aligning error-prone maps to sequences.
Results
We introduce a novel seed-and-extend glocal (short for global-local) alignment method, OPTIMA (and a sliding-window extension for overlap alignment, OPTIMA-Overlap), which is the first to create indexes for continuous-valued mapping data while accounting for mapping errors. We also present a novel statistical model, agnostic with respect to technology-dependent error rates, for conservatively evaluating the significance of alignments without relying on expensive permutation-based tests.
Conclusions
We show that OPTIMA and OPTIMA-Overlap outperform other state-of-the-art approaches (1.6–2 times more sensitive) and are more efficient (170–200 %) and precise in their alignments (nearly 99 % precision). These advantages are independent of the quality of the data, suggesting that our indexing approach and statistical evaluation are robust, provide improved sensitivity and guarantee high precision. |
---|---|
ISSN: | 2047-217X 2047-217X |
DOI: | 10.1186/s13742-016-0110-0 |