GroEL2 of Mycobacterium tuberculosis Reveals the Importance of Structural Pliability in Chaperonin Function

Intracellular protein folding is mediated by molecular chaperones, the best studied among which are the chaperonins GroEL and GroES. Conformational changes and allosteric transitions between different metastable states are hallmarks of the chaperonin mechanism. These conformational transitions betwe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bacteriology 2016-02, Vol.198 (3), p.486-497
Hauptverfasser: Chilukoti, Neeraja, Kumar, C M Santosh, Mande, Shekhar C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intracellular protein folding is mediated by molecular chaperones, the best studied among which are the chaperonins GroEL and GroES. Conformational changes and allosteric transitions between different metastable states are hallmarks of the chaperonin mechanism. These conformational transitions between three structural domains of GroEL are anchored at two hinges. Although hinges are known to be critical for mediating the communication between different domains of GroEL, the relative importance of hinges on GroEL oligomeric assembly, ATPase activity, conformational changes, and functional activity is not fully characterized. We have exploited the inability of Mycobacterium tuberculosis GroEL2 to functionally complement an Escherichia coli groEL mutant to address the importance of hinge residues in the GroEL mechanism. Various chimeras of M. tuberculosis GroEL2 and E. coli GroEL allowed us to understand the role of hinges and dissect the consequences of oligomerization and substrate binding capability on conformational transitions. The present study explains the concomitant conformational changes observed with GroEL hinge variants and is best supported by the normal mode analysis. Conformational changes and allosteric transitions are hallmarks of the chaperonin mechanism. We have exploited the inability of M. tuberculosis GroEL2 to functionally complement a strain of E. coli in which groEL expression is repressed to address the importance of hinges. The significance of conservation at the hinge regions stands out as a prominent feature of the GroEL mechanism in binding to GroES and substrate polypeptides. The hinge residues play a significant role in the chaperonin activity in vivo and in vitro.
ISSN:0021-9193
1098-5530
DOI:10.1128/JB.00844-15