Increased mitochondrial ATP production capacity in brain of healthy mice and a mouse model of isolated complex I deficiency after isoflurane anesthesia

We reported before that the minimal alveolar concentration (MAC) of isoflurane is decreased in complex I-deficient mice lacking the NDUFS4 subunit of the respiratory chain (RC) (1.55 and 0.81 % at postnatal (PN) 22–25 days and 1.68 and 0.65 % at PN 31–34 days for wildtype (WT) and CI-deficient KO, r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inherited metabolic disease 2016-01, Vol.39 (1), p.59-65
Hauptverfasser: Manjeri, Ganesh R., Rodenburg, Richard J., Blanchet, Lionel, Roelofs, Suzanne, Nijtmans, Leo G., Smeitink, Jan A., Driessen, Jacques J., Koopman, Werner J. H., Willems, Peter H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We reported before that the minimal alveolar concentration (MAC) of isoflurane is decreased in complex I-deficient mice lacking the NDUFS4 subunit of the respiratory chain (RC) (1.55 and 0.81 % at postnatal (PN) 22–25 days and 1.68 and 0.65 % at PN 31–34 days for wildtype (WT) and CI-deficient KO, respectively). A more severe respiratory depression was caused by 1.0 MAC isoflurane in KO mice (respiratory rate values of 86 and 45 at PN 22–25 days and 69 and 29 at PN 31–34 days for anesthetized WT and KO, respectively). Here, we address the idea that isoflurane anesthesia causes a much larger decrease in brain mitochondrial ATP production in KO mice thus explaining their increased sensitivity to this anesthetic. Brains from WT and KO mice of the above study were removed immediately after MAC determination at PN 31–34 days and a mitochondria-enriched fraction was prepared. Aliquots were used for measurement of maximal ATP production in the presence of pyruvate, malate, ADP and creatine and, after freeze-thawing, the maximal activity of the individual RC complexes in the presence of complex-specific substrates. CI activity was dramatically decreased in KO, whereas ATP production was decreased by only 26 % ( p  
ISSN:0141-8955
1573-2665
DOI:10.1007/s10545-015-9885-x