Mapping Sub-Second Structure in Mouse Behavior

Complex animal behaviors are likely built from simpler modules, but their systematic identification in mammals remains a significant challenge. Here we use depth imaging to show that 3D mouse pose dynamics are structured at the sub-second timescale. Computational modeling of these fast dynamics effe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2015-12, Vol.88 (6), p.1121-1135
Hauptverfasser: Wiltschko, Alexander B., Johnson, Matthew J., Iurilli, Giuliano, Peterson, Ralph E., Katon, Jesse M., Pashkovski, Stan L., Abraira, Victoria E., Adams, Ryan P., Datta, Sandeep Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1135
container_issue 6
container_start_page 1121
container_title Neuron (Cambridge, Mass.)
container_volume 88
creator Wiltschko, Alexander B.
Johnson, Matthew J.
Iurilli, Giuliano
Peterson, Ralph E.
Katon, Jesse M.
Pashkovski, Stan L.
Abraira, Victoria E.
Adams, Ryan P.
Datta, Sandeep Robert
description Complex animal behaviors are likely built from simpler modules, but their systematic identification in mammals remains a significant challenge. Here we use depth imaging to show that 3D mouse pose dynamics are structured at the sub-second timescale. Computational modeling of these fast dynamics effectively describes mouse behavior as a series of reused and stereotyped modules with defined transition probabilities. We demonstrate this combined 3D imaging and machine learning method can be used to unmask potential strategies employed by the brain to adapt to the environment, to capture both predicted and previously hidden phenotypes caused by genetic or neural manipulations, and to systematically expose the global structure of behavior within an experiment. This work reveals that mouse body language is built from identifiable components and is organized in a predictable fashion; deciphering this language establishes an objective framework for characterizing the influence of environmental cues, genes and neural activity on behavior. [Display omitted] •Computational modeling reveals structure in mouse behavior without observer bias•Mouse behavior appears to be composed of stereotyped, sub-second modules•From this perspective, new behaviors result from altering both modules and transitions•Unsupervised analysis reveals how genes and neural activity impact behavior Mouse behavior appears inherently divided into brief modules of 3D motion. This sub-second structure reveals the influence of the environment, genes and neural activity on action.
doi_str_mv 10.1016/j.neuron.2015.11.031
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4708087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627315010375</els_id><sourcerecordid>3912637611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-1cc5f7a740dc4ab4e228d569cc23ee4dd0d730cfdce27808e5c1afd52e98c0e23</originalsourceid><addsrcrecordid>eNp9kc1uGyEURlHUqHGSvkFUjdRNNzPlMjAMm0pt1CSVEmXhZI0w3EmwbHBhxlLfPljOT9tFVyw494PvHkLOgDZAofuybAJOKYaGURANQENbOCAzoErWHJR6R2a0V13dMdkekeOcl5QCFwrekyPWdb1kDGakuTGbjQ8P1Xxa1HO0MbhqPqbJjlPCyofqJk4Zq-_4aLY-plNyOJhVxg_P5wm5v_hxd35VX99e_jz_dl1brmCswVoxSCM5dZabBUfGeic6ZS1rEblz1MmW2sFZZLKnPQoLZnCCoeotRdaekK_73M20WGPBwpjMSm-SX5v0W0fj9d83wT_qh7jVXNKSJ0vA5-eAFH9NmEe99tniamUClkYapABQXSt26Kd_0GWcUij1dlQrOsopFIrvKZtizgmH188A1Tsheqn3QvROiAbQRUgZ-_hnkdehFwNvTbGsc-sx6Ww9BovOJ7SjdtH__4UnwJueeA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753560401</pqid></control><display><type>article</type><title>Mapping Sub-Second Structure in Mouse Behavior</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wiltschko, Alexander B. ; Johnson, Matthew J. ; Iurilli, Giuliano ; Peterson, Ralph E. ; Katon, Jesse M. ; Pashkovski, Stan L. ; Abraira, Victoria E. ; Adams, Ryan P. ; Datta, Sandeep Robert</creator><creatorcontrib>Wiltschko, Alexander B. ; Johnson, Matthew J. ; Iurilli, Giuliano ; Peterson, Ralph E. ; Katon, Jesse M. ; Pashkovski, Stan L. ; Abraira, Victoria E. ; Adams, Ryan P. ; Datta, Sandeep Robert</creatorcontrib><description>Complex animal behaviors are likely built from simpler modules, but their systematic identification in mammals remains a significant challenge. Here we use depth imaging to show that 3D mouse pose dynamics are structured at the sub-second timescale. Computational modeling of these fast dynamics effectively describes mouse behavior as a series of reused and stereotyped modules with defined transition probabilities. We demonstrate this combined 3D imaging and machine learning method can be used to unmask potential strategies employed by the brain to adapt to the environment, to capture both predicted and previously hidden phenotypes caused by genetic or neural manipulations, and to systematically expose the global structure of behavior within an experiment. This work reveals that mouse body language is built from identifiable components and is organized in a predictable fashion; deciphering this language establishes an objective framework for characterizing the influence of environmental cues, genes and neural activity on behavior. [Display omitted] •Computational modeling reveals structure in mouse behavior without observer bias•Mouse behavior appears to be composed of stereotyped, sub-second modules•From this perspective, new behaviors result from altering both modules and transitions•Unsupervised analysis reveals how genes and neural activity impact behavior Mouse behavior appears inherently divided into brief modules of 3D motion. This sub-second structure reveals the influence of the environment, genes and neural activity on action.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2015.11.031</identifier><identifier>PMID: 26687221</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Animals ; Behavior ; Behavior, Animal ; Brain research ; Computer Simulation ; Grammar ; Imaging, Three-Dimensional - instrumentation ; Imaging, Three-Dimensional - methods ; Kinesics ; Machine Learning ; Male ; Methods ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Optogenetics - instrumentation ; Optogenetics - methods ; Scholarships &amp; fellowships ; Three dimensional imaging</subject><ispartof>Neuron (Cambridge, Mass.), 2015-12, Vol.88 (6), p.1121-1135</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Dec 16, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-1cc5f7a740dc4ab4e228d569cc23ee4dd0d730cfdce27808e5c1afd52e98c0e23</citedby><cites>FETCH-LOGICAL-c491t-1cc5f7a740dc4ab4e228d569cc23ee4dd0d730cfdce27808e5c1afd52e98c0e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627315010375$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26687221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wiltschko, Alexander B.</creatorcontrib><creatorcontrib>Johnson, Matthew J.</creatorcontrib><creatorcontrib>Iurilli, Giuliano</creatorcontrib><creatorcontrib>Peterson, Ralph E.</creatorcontrib><creatorcontrib>Katon, Jesse M.</creatorcontrib><creatorcontrib>Pashkovski, Stan L.</creatorcontrib><creatorcontrib>Abraira, Victoria E.</creatorcontrib><creatorcontrib>Adams, Ryan P.</creatorcontrib><creatorcontrib>Datta, Sandeep Robert</creatorcontrib><title>Mapping Sub-Second Structure in Mouse Behavior</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Complex animal behaviors are likely built from simpler modules, but their systematic identification in mammals remains a significant challenge. Here we use depth imaging to show that 3D mouse pose dynamics are structured at the sub-second timescale. Computational modeling of these fast dynamics effectively describes mouse behavior as a series of reused and stereotyped modules with defined transition probabilities. We demonstrate this combined 3D imaging and machine learning method can be used to unmask potential strategies employed by the brain to adapt to the environment, to capture both predicted and previously hidden phenotypes caused by genetic or neural manipulations, and to systematically expose the global structure of behavior within an experiment. This work reveals that mouse body language is built from identifiable components and is organized in a predictable fashion; deciphering this language establishes an objective framework for characterizing the influence of environmental cues, genes and neural activity on behavior. [Display omitted] •Computational modeling reveals structure in mouse behavior without observer bias•Mouse behavior appears to be composed of stereotyped, sub-second modules•From this perspective, new behaviors result from altering both modules and transitions•Unsupervised analysis reveals how genes and neural activity impact behavior Mouse behavior appears inherently divided into brief modules of 3D motion. This sub-second structure reveals the influence of the environment, genes and neural activity on action.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Behavior</subject><subject>Behavior, Animal</subject><subject>Brain research</subject><subject>Computer Simulation</subject><subject>Grammar</subject><subject>Imaging, Three-Dimensional - instrumentation</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Kinesics</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Methods</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Optogenetics - instrumentation</subject><subject>Optogenetics - methods</subject><subject>Scholarships &amp; fellowships</subject><subject>Three dimensional imaging</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1uGyEURlHUqHGSvkFUjdRNNzPlMjAMm0pt1CSVEmXhZI0w3EmwbHBhxlLfPljOT9tFVyw494PvHkLOgDZAofuybAJOKYaGURANQENbOCAzoErWHJR6R2a0V13dMdkekeOcl5QCFwrekyPWdb1kDGakuTGbjQ8P1Xxa1HO0MbhqPqbJjlPCyofqJk4Zq-_4aLY-plNyOJhVxg_P5wm5v_hxd35VX99e_jz_dl1brmCswVoxSCM5dZabBUfGeic6ZS1rEblz1MmW2sFZZLKnPQoLZnCCoeotRdaekK_73M20WGPBwpjMSm-SX5v0W0fj9d83wT_qh7jVXNKSJ0vA5-eAFH9NmEe99tniamUClkYapABQXSt26Kd_0GWcUij1dlQrOsopFIrvKZtizgmH188A1Tsheqn3QvROiAbQRUgZ-_hnkdehFwNvTbGsc-sx6Ww9BovOJ7SjdtH__4UnwJueeA</recordid><startdate>20151216</startdate><enddate>20151216</enddate><creator>Wiltschko, Alexander B.</creator><creator>Johnson, Matthew J.</creator><creator>Iurilli, Giuliano</creator><creator>Peterson, Ralph E.</creator><creator>Katon, Jesse M.</creator><creator>Pashkovski, Stan L.</creator><creator>Abraira, Victoria E.</creator><creator>Adams, Ryan P.</creator><creator>Datta, Sandeep Robert</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151216</creationdate><title>Mapping Sub-Second Structure in Mouse Behavior</title><author>Wiltschko, Alexander B. ; Johnson, Matthew J. ; Iurilli, Giuliano ; Peterson, Ralph E. ; Katon, Jesse M. ; Pashkovski, Stan L. ; Abraira, Victoria E. ; Adams, Ryan P. ; Datta, Sandeep Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-1cc5f7a740dc4ab4e228d569cc23ee4dd0d730cfdce27808e5c1afd52e98c0e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Behavior</topic><topic>Behavior, Animal</topic><topic>Brain research</topic><topic>Computer Simulation</topic><topic>Grammar</topic><topic>Imaging, Three-Dimensional - instrumentation</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Kinesics</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Methods</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Optogenetics - instrumentation</topic><topic>Optogenetics - methods</topic><topic>Scholarships &amp; fellowships</topic><topic>Three dimensional imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wiltschko, Alexander B.</creatorcontrib><creatorcontrib>Johnson, Matthew J.</creatorcontrib><creatorcontrib>Iurilli, Giuliano</creatorcontrib><creatorcontrib>Peterson, Ralph E.</creatorcontrib><creatorcontrib>Katon, Jesse M.</creatorcontrib><creatorcontrib>Pashkovski, Stan L.</creatorcontrib><creatorcontrib>Abraira, Victoria E.</creatorcontrib><creatorcontrib>Adams, Ryan P.</creatorcontrib><creatorcontrib>Datta, Sandeep Robert</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wiltschko, Alexander B.</au><au>Johnson, Matthew J.</au><au>Iurilli, Giuliano</au><au>Peterson, Ralph E.</au><au>Katon, Jesse M.</au><au>Pashkovski, Stan L.</au><au>Abraira, Victoria E.</au><au>Adams, Ryan P.</au><au>Datta, Sandeep Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping Sub-Second Structure in Mouse Behavior</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2015-12-16</date><risdate>2015</risdate><volume>88</volume><issue>6</issue><spage>1121</spage><epage>1135</epage><pages>1121-1135</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Complex animal behaviors are likely built from simpler modules, but their systematic identification in mammals remains a significant challenge. Here we use depth imaging to show that 3D mouse pose dynamics are structured at the sub-second timescale. Computational modeling of these fast dynamics effectively describes mouse behavior as a series of reused and stereotyped modules with defined transition probabilities. We demonstrate this combined 3D imaging and machine learning method can be used to unmask potential strategies employed by the brain to adapt to the environment, to capture both predicted and previously hidden phenotypes caused by genetic or neural manipulations, and to systematically expose the global structure of behavior within an experiment. This work reveals that mouse body language is built from identifiable components and is organized in a predictable fashion; deciphering this language establishes an objective framework for characterizing the influence of environmental cues, genes and neural activity on behavior. [Display omitted] •Computational modeling reveals structure in mouse behavior without observer bias•Mouse behavior appears to be composed of stereotyped, sub-second modules•From this perspective, new behaviors result from altering both modules and transitions•Unsupervised analysis reveals how genes and neural activity impact behavior Mouse behavior appears inherently divided into brief modules of 3D motion. This sub-second structure reveals the influence of the environment, genes and neural activity on action.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26687221</pmid><doi>10.1016/j.neuron.2015.11.031</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2015-12, Vol.88 (6), p.1121-1135
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4708087
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Animals
Behavior
Behavior, Animal
Brain research
Computer Simulation
Grammar
Imaging, Three-Dimensional - instrumentation
Imaging, Three-Dimensional - methods
Kinesics
Machine Learning
Male
Methods
Mice
Mice, Inbred C57BL
Mice, Transgenic
Optogenetics - instrumentation
Optogenetics - methods
Scholarships & fellowships
Three dimensional imaging
title Mapping Sub-Second Structure in Mouse Behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T04%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20Sub-Second%20Structure%20in%20Mouse%20Behavior&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Wiltschko,%20Alexander%C2%A0B.&rft.date=2015-12-16&rft.volume=88&rft.issue=6&rft.spage=1121&rft.epage=1135&rft.pages=1121-1135&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2015.11.031&rft_dat=%3Cproquest_pubme%3E3912637611%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753560401&rft_id=info:pmid/26687221&rft_els_id=S0896627315010375&rfr_iscdi=true