Analysis of genomic rearrangements by using the Burrows-Wheeler transform of short-read data
The potential utility of the Burrows-Wheeler transform (BWT) of a large amount of short-read data ("reads") has not been fully studied. The BWT basically serves as a lossless dictionary of reads, unlike the heuristic and lossy reads-to-genome mapping results conventionally obtained in the...
Gespeichert in:
Veröffentlicht in: | BMC bioinformatics 2015-12, Vol.16 Suppl 18 (S18), p.S5-S5, Article S5 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The potential utility of the Burrows-Wheeler transform (BWT) of a large amount of short-read data ("reads") has not been fully studied. The BWT basically serves as a lossless dictionary of reads, unlike the heuristic and lossy reads-to-genome mapping results conventionally obtained in the first step of sequence analysis. Thus, it is naturally expected to lead to development of sensitive methods for analysis of short-read data. Recently, one of the most active areas of research in sequence analysis is sensitive detection of rare genomic rearrangements from whole-genome sequencing (WGS) data of heterogeneous cancer samples. The application the BWT of reads to the analysis of genomic rearrangements is addressed in this study.
A new method for sensitive detection of genomic rearrangements by using the BWT of reads in the following three steps is proposed: first, breakpoint regions, which contain breakpoints and are joined together by rearrangement, are predicted from the distribution of so-called discordant pairs by using a kind of the conjugate gradient method; second, reads partially matching the breakpoint regions are collected from the BWT of reads; and third, breakpoints are detected as branching points among the collected reads, and their precise positions are determined. The method was experimentally implemented, and its performance (i.e., sensitivity and specificity) was evaluated by using simulated data with known artificial rearrangements. It was applied to publicly available real biological WGS data of cancer patients, and the detection results were compared with published results.
Serving as a lossless dictionary of reads, the BWT of short reads enables sensitive analysis of genomic rearrangements in heterogeneous cancer-genome samples when used in conjunction with breakpoint-region predictions based on a conjugate gradient method. |
---|---|
ISSN: | 1471-2105 1471-2105 |
DOI: | 10.1186/1471-2105-16-S18-S5 |