High performance broadband photodetector using fabricated nanowires of bismuth selenide
Recently, very exciting optoelectronic properties of Topological insulators (TIs) such as strong light absorption, photocurrent sensitivity to the polarization of light, layer thickness and size dependent band gap tuning have been demonstrated experimentally. Strong interaction of light with TIs has...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-01, Vol.6 (1), p.19138-19138, Article 19138 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, very exciting optoelectronic properties of Topological insulators (TIs) such as strong light absorption, photocurrent sensitivity to the polarization of light, layer thickness and size dependent band gap tuning have been demonstrated experimentally. Strong interaction of light with TIs has been shown theoretically along with a proposal for a TIs based broad spectral photodetector having potential to perform at the same level as that of a graphene based photodetector. Here we demonstrate that focused ion beam (FIB) fabricated nanowires of TIs could be used as ultrasensitive visible-NIR nanowire photodetector based on TIs. We have observed efficient electron hole pair generation in the studied Bi
2
Se
3
nanowire under the illumination of visible (532 nm) and IR light (1064 nm). The observed photo-responsivity of ~300 A/W is four orders of magnitude larger than the earlier reported results on this material. Even though the role of 2D surface states responsible for high reponsivity is unclear, the novel and simple micromechanical cleavage (exfoliation) technique for the deposition of Bi
2
Se
3
flakes followed by nanowire fabrication using FIB milling enables the construction and designing of ultrasensitive broad spectral TIs based nanowire photodetector which can be exploited further as a promising material for optoelectronic devices. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep19138 |